next up previous
Next: a formula for -powers Up: some linear algebra Previous: Relations of derivations.

curvature revisited

In this subsection we prove an important proposition on curvature. But before we do that, we do two things. Firstly, we prove the following lemma.

LEMMA 5.7   Let $ A$ be a commutative ring. Let $ B$ be a commutative $ A$ -algebra. Then for any $ X,Y\in \operatorname{Der}_A(B)$ and for any $ \omega\in \Omega^1_{X/S}$ , we have

$\displaystyle i_Y i_X (d \omega)
= X. \langle \omega,Y\rangle
- Y.\langle \omega,X \rangle
-i_{[X,Y]}\omega .
$

PROOF..

      $\displaystyle i_Y i_X d \omega$
    $\displaystyle =$ $\displaystyle i_Y (L_X-d i_X)\omega$
    $\displaystyle =$ $\displaystyle i_Y (L_X \omega)-i_Y d \langle \omega,X \rangle$
    $\displaystyle =$ $\displaystyle L_X (i_Y \omega)-i_{[X,Y]}\omega - Y.\langle \omega,X \rangle$
    $\displaystyle =$ $\displaystyle X. \langle \omega,Y\rangle -i_{[X,Y]}\omega - Y.\langle \omega,X \rangle$

$ \qedsymbol$

Secondly, we add a notation.

DEFINITION 5.8   Let $ A$ be a commutative ring. Let $ B$ be a commutative $ A$ -algebra. Let $ M$ be a $ B$ -module with a connection

$\displaystyle \nabla: M\to \Omega^1_{B/A}\otimes_B M.
$

Then for any $ X\in \operatorname{Der}_A(B)$ ,

$\displaystyle (i_X\otimes 1)\nabla : M \to M
$

is an $ A$ -linear map. We shall denote it by $ \nabla_X$ .

PROPOSITION 5.9   Let $ A$ be a commutative ring. Let $ B$ be a commutative $ A$ -algebra. Let $ M$ be a $ B$ -module with a connection

$\displaystyle \nabla: M\to \Omega^1_{B/A}\otimes_B M.
$

Let $ R$ be the connection $ 2$ -form of $ \nabla$ . Then for any $ X,Y\in \operatorname{Der}_A(B)$ , we have

$\displaystyle \langle R, X \wedge Y\rangle_\wedge =[\nabla_X,\nabla_Y]-\nabla_{[X,Y]}
$

PROOF.. Let $ v$ be an element of $ M$ . Since $ \nabla v$ is an element of $ \Omega^1_{B/A}\otimes_B M$ , we may write it as :

$\displaystyle \nabla v=\sum_j \omega_j \otimes v_j
$

for some $ \omega_j \in \Omega^1_{B/A}, v_j \in M$ . Then we compute

$\displaystyle \nabla \nabla v
=\sum_j d \omega_j \otimes v_j - \sum_j \omega_j \wedge \nabla v_j.
$

      $\displaystyle i_Y i_X \nabla \nabla v$
    $\displaystyle =$ $\displaystyle ((i_Y i_X )(d \omega_j)) \otimes v_j -i_Y \sum_j \langle \omega_j,X\rangle \nabla v_j +\sum_j \omega_j \nabla_X v_j$
    $\displaystyle =$ $\displaystyle (i_Y i_X d \omega_j)\otimes v_j -\sum_j \langle \omega_j , X) \nabla_Y v_j +\sum_j \langle \omega_j , Y) \nabla_X v_j$

On the other hand, we have

$\displaystyle \nabla_X(v)
=(i_X\otimes 1)\nabla(v))=\sum_j \langle \omega_j,X\rangle v_j
$

So we may proceed

$\displaystyle \nabla \nabla_X(v)
=\sum_j d \langle \omega_j,X\rangle v_j
+\sum_j \langle \omega_j,X\rangle \nabla v_j
$

$\displaystyle \nabla_Y \nabla_X(v)
=\sum_j Y. \langle \omega_j,X\rangle v_j
+\sum_j \langle \omega_j,X\rangle \nabla_Y v_j
$

Thus, together with the Lemma above, we see

$\displaystyle i_Y i_X \nabla \nabla (v)+ \nabla_Y \nabla_X(v)-\nabla_X\nabla_Y(v)
=-\sum_j i_{[X,Y]}\omega_j \otimes v_j=-\nabla_{[X,Y]} v
$

$ \qedsymbol$

COROLLARY 5.10   If the curvature $ R$ of $ \nabla$ is equal to zero, then

$\displaystyle \nabla_{\bullet}: \operatorname{Der}_A \to \operatorname{End}_A(M)
$

is a Lie algebra homomorphism.


next up previous
Next: a formula for -powers Up: some linear algebra Previous: Relations of derivations.
2007-12-26