next up previous
Next: Abstract Jordan Chevalley decomposition Up: generalities in finite dimensional Previous: Semi direct products of

Levi decomposition

DEFINITION 5.58   Let $ L$ be a Lie algebra over a field $ k$ . Let $ R$ be the radical of $ L$ . A Levi-subalgebra of $ L$ is a subalgebra $ L_1$ of $ L$ such that $ L$ is a direct sum of $ L_1$ and $ R$ as a vector space over $ k$ .

We have the following obvious lemma.

LEMMA 5.59   Let $ L$ be a Lie algebra over a field $ k$ . Let $ R$ be the radical of $ L$ . Let $ L_1$ be a Levi-subalgebra of $ L$ . Then:
  1. $ L \cong L_1 \ltimes R$ .
  2. $ L_1\cong L/R$ .
In particular the isomorphism class of $ L_1$ is unique.

$ \qedsymbol$

LEMMA 5.60   Let $ n$ be a positive integer. Let $ L$ be an $ n$ -dimensional Lie algebra over a field $ k$ of characteristic $ p\in \operatorname{Ccs}(n^2)$ . Assume the radical $ R$ of $ L$ is abelian. Then:
  1. $ R=L^\perp$ . (We equip $ L$ with the usual Killing form.)
  2. $\displaystyle \operatorname{Hom}_{k\operatorname{-linear}}(L,R)
$

    admits an action $ \alpha$ of $ L$ . Namely,

    $\displaystyle (\alpha(x).\varphi)(y)
=[x,\varphi(y)]-\varphi([x,y])\qquad (x\in L, y\in L).
$

  3. For any $ x\in L$ , we have $ (\alpha(x).\varphi))\vert _R=0$ .
  4. For any $ x\in R$ , $ \alpha(x)$ is nilpotent.
  5. $\displaystyle V_1=\{\varphi\in \operatorname{Hom}_{k\operatorname{-linear}}(L,R);
\varphi\vert _R\in k\cdot\operatorname{id}_R
\}
$

    is an $ R$ -submodule of $ \operatorname{Hom}_{k\operatorname{-linear}}(L,R)$ .
  6. If $ R$ is not equal to zero, then

    $\displaystyle V_2=\{\varphi\in \operatorname{Hom}_{R\operatorname{-module}}(L,R);
\varphi\vert _R\in k\cdot\operatorname{id}_R
\}\neq 0.
$

  7. There exists a Levi subalgebra $ L_1$ of $ L$ .

PROOF.. (1) Since $ L^\perp$ has a trivial Killing form, it is solvable. (Cartan's criterion.) Thus, by the maximality of $ R$ , we have

$\displaystyle R\supset L^\perp.
$

On the other hand, let us take an arbitrary $ x\in R$ , then for any $ y,z\in L$ , we have

$\displaystyle \operatorname{ad}(x)\operatorname{ad}(y)z=[x,[y,z]]\in [x,R] \subset R,
$

$\displaystyle (\operatorname{ad}(x)\operatorname{ad}(y))^2 z\in [x,[y,R]]\subset [x,R]=0 \quad
($Since $R$ is abelian.$\displaystyle )
$

So $ \kappa_L(x,y)=\operatorname{tr}_L(\operatorname{ad}(x)\operatorname{ad}(y))=0$ (as a trace of a nilpotent element.) Thus

$\displaystyle R \subset L^\perp
$

also holds.

(2):follows from the general theory.

(3):follows easily from the definition of $ \alpha$ .

(4):Let us take an arbitrary $ x\in R$ . For any $ y\in L$ , we have by using(2)

$\displaystyle ((\alpha(x)^2).\varphi)(y)=[x,(x.\varphi)(y)]-(x.\varphi)([x,y])
\in [R,R]-(x.\varphi)(R)=0.
$

Thus $ \alpha(x)^2=0$ .

(5): follows clearly from (3).

(6): follows from (4),(5) and Engel's theorem. (We need to note that

$\displaystyle V_2=\{ \varphi \in V_1; \forall x \in R (\alpha(x).\varphi=0 )\}
$

holds.) (7): The action of $ R$ on $ V_2$ is equal to zero. So $ V_2$ admits an action by $ L/R$ , which is semisimple. Now consider the following exact sequence of $ L/R$ -modules.

$\displaystyle 0\to V_0\to V_2 \overset{\vert _R}{\to} k \to 0
$

where $ V_0$ is the kernel of the restriction map. By a special case of Weyl's theorem on complete reducibility (Lemma 5.51), We see that the sequence splits. (Since we assumed $ p\in \operatorname{Ccs}(n^2)$ ). This implies that there exists an element $ \varphi_0\in V_2$ such that

$\displaystyle \alpha(x).\varphi_0=0,\qquad \varphi_0\vert _R=\operatorname{id}_R.
$

Thus $ \varphi_0$ gives a splitting of the injection $ R\subset L$ . A Levi subalgebra of $ L$ is obtained by putting

$\displaystyle L_1=\{x-\varphi_0(x) ; x\in L\}.
$

$ \qedsymbol$

THEOREM 5.61 (Levi decomposition of a Lie algebra)   Let $ n$ be a positive integer. Let $ p \in \operatorname{Ccs}(n^2).$ Let $ L$ be a $ n$ -dimensional Lie algebra over a field of characteristic $ p$ . Then $ L$ has a Levi subalgebra $ L_1$ . In other words, $ L$ may be expressed as a semi direct product

$\displaystyle L=L_1 \ltimes R
$

where $ L_1$ is a semisimple (Levi) subalgebra of $ L$ , and $ R$ is a solvable (radical) ideal of $ L$ .

PROOF.. If $ R=0$ , then we only need to set $ L_1=L$ . So let us assume $ R\neq 0$ . Let us put

$\displaystyle R_1=[R,R].
$

Then from the definition, we $ R/R_1$ is an abelian Lie algebra. It is also easy to verify that $ R_1$ is an ideal of $ L$ . ($ R_1$ is a characteristic ideal of $ R$ ). We apply the preceding lemma for $ R/R_1 \subset L/R_1 $ to obtain a Levi subalgebra $ M/R_1$ of $ L/R_1$ . Then $ M$ satisfies the following relations.

$\displaystyle M + R=L,\quad M \cap R= R_1.
$

Since $ R$ is solvable (and we have assumed $ R\neq 0$ ), we see that $ \dim(M)$ is strictly smaller than $ \dim(L)$ . By induction $ M$ have a Levi subalgebra $ M_1$ . Then it is clear that $ M_1$ is a Levi subalgebra of $ L$ .

$ \qedsymbol$

ARRAY(0x941b644)


next up previous
Next: Abstract Jordan Chevalley decomposition Up: generalities in finite dimensional Previous: Semi direct products of
2007-12-19