next up previous
Next: The cateogory Up: Categories, abelian categories and Previous: Cone of a complex

The category $ K(\mathcal{C})$

DEFINITION 11.3   [1, 5.1] For any additive category $ \mathcal{C}$ , we define $ K(\mathcal{C})$ to be
  1. $ \operatorname{Ob}(K(\mathcal{C}))=\operatorname{Ob}(C(\mathcal{C}))$ (that means, objects of $ K(\mathcal{C})$ are complexes).
  2. For any objects $ X^\bullet, Y^\bullet $ of $ K(\mathcal{C})$ , we define

    $\displaystyle \operatorname{Hom}_{K(\mathcal{C})} (X^\bullet,Y^\bullet)
=
\operatorname{Hom}_{C(\mathcal{C})} (X^\bullet,Y^\bullet)/$Homotopy

Even if $ \mathcal{C}$ is abelian, $ K(\mathcal{C})$ is no longer abelian in general [1, 5.7]. But $ K(\mathcal{C})$ has distinguished triangles, which are triangles isomorphic to standard triangles.



2009-07-31