今日のテーマ《合成関数の微分・連鎖律》

(全)微分を「一次近似」としてとらえると、合成関数の微分は大変やさしい。

定理 5.1. \mathbb{R}^l の開集合 U から \mathbb{R}^m への写像 f と、f(U) を部分集合として含む開集合 V から \mathbb{R}^n への写像 g が与えられていたとする。このとき、もし f が点 $a \in U$ で全微分可能で、なおかつ g が点 b = f(a) で全微分可能ならば、合成関数 $g \circ f$ も a で全微分可能であって、

$$D(g \circ f)_a = (Dg)_{f(a)} \cdot (Df)_a$$

("·"は行列の積)が成り立つ。

証明.
$$(Df)_a = L$$
, $(Dg)_b = M$ と書くと、
$$f(a+v) = f(a) + Lv + o(||v||) \quad (= b + Lv + o(||v||))$$
$$g(b+w) = g(b) + Mw + o(||w||).$$

このことから、

$$g(f(a+v)) = g(b+Lv+o(||v||))$$

= $g(b) + M \cdot (Lv+o(||v||)) + o(||Lv+o(||v||)||)$
= $g(f(a)) + M \cdot Lv + o(||v||))$

がわかる。

全微分の行列成分は偏微分係数であったことを思い出すと、次の系が得られる。

系 5.2 ("定理 4.6, 定理 4.7"). 上の定理の状況の下で、 \mathbb{R}^l , \mathbb{R}^m , \mathbb{R}^n の 座標系をそれぞれ (x_1, x_2, \ldots, x_l) , (y_1, y_2, \ldots, y_m) , (z_1, z_2, \ldots, z_n) として、f, g を成分で表示すると、

$$\left. \frac{\partial (g \circ f)_i}{\partial x_k} \right|_{x=a} = \sum_j \left. \frac{\partial g_i}{\partial y_j} \right|_{y=f(b)} \left. \frac{\partial f_j}{\partial x_k} \right|_{x=a}$$

例 5.1.

$$f: \mathbb{R}^2 \ni (u, v) \mapsto (u, u + v^3) \in \mathbb{R}^2$$
$$q: \mathbb{R}^2 \ni (x, y) \mapsto x^3 y \in \mathbb{R}$$

を考えると、

$$(Df)_{(a,b)} = \begin{pmatrix} 1 & 1 \\ 0 & 3v^2 \end{pmatrix} \Big|_{(u,v)=(a,b)} = \begin{pmatrix} 1 & 0 \\ 1 & 3b^2 \end{pmatrix}$$
$$(Dg)_{(x_0,y_0)} = \begin{pmatrix} 3x^2y & x^3 \end{pmatrix} \Big|_{(x,y)=(x_0,y_0)} = \begin{pmatrix} 3x_0^2y_0 & x_0^3 \end{pmatrix}$$

とくに、

$$(Dg)_{f(a,b)} == (3a^2(a+b^3) \ a^3)$$

とくに、 他方で、

$$(g \circ f)(u, v) = u^3(u + v^3)$$

であるから、

$$(D(g \circ f))_{(a,b)} = (4a^3 + 3a^3b^3 \quad 3a^3b^2)$$

であって、簡単な行列算により、この場合に定理が実際に正しいこと を確かめられる。

変数の数 l,m,n を変えて、上の系をいろいろ書き換えてみると良い。"連鎖律"の感じが掴めるだろう。連鎖律は、変数変換を考える際に特に重要になる。

定義 5.1. \mathbb{R}^l の開集合 U から \mathbb{R}^m への写像 f の偏微分係数

$$\frac{\partial f}{\partial x_i}|_{x=a}$$

 e^{a} の関数とみたものを、f の x_{i} での偏導関数とよぶ。

上の定義では、f としてはベクトル値を許して記述した。下の定義でも f をベクトルのままで扱っても良いのであるが、あえて成分で書いておくことにする。

定義 5.2. \mathbb{R}^l の開集合 U から \mathbb{R}^m への写像 f が U において C^1 -級であるとは, f の全ての成分の全ての偏導関数

$$\left\{ \frac{\partial f_i}{\partial x_j} \Big|_{x=a} \quad ; \quad \begin{array}{l} i = 1, 2, \dots, m \\ j = 1, 2, \dots, l \end{array} \right\}$$

が存在して、しかも $a \in U$ について連続であるときにいう。

上の定義は、確かめやすいが、偏微分を用いているので「偏った」感じである。

定理 5.3. \mathbb{R}^l の開集合 U から \mathbb{R}^m への写像 f について、次は同値である。

- (1) f は上の定義の意味で C^1 級である。
- (2) f は U の各点で微分可能で、かつ全微分 $Df|_{x=a}$ は a について (U 上の $M_{m,l}(\mathbb{R})$ -値関数として) 連続である。

証明には次の補題を(連続して)用いると良い。

補題 5.1. 定理の仮定の下で、 $x \in U$ かつ $B_r(x) \subset U$ とする。f が U で C^1 級ならば、

$$f(x + h_1 e_1) = f(x) + h_1 \int_0^1 \frac{\partial f(x + t_1 h_1 e_1)}{\partial x_1} dt_1$$
 $(h_1 \in \mathbb{R}, |h_1| < r)$

がなりたつ。ここに、 $e_1 = (1,0,0,\ldots,0)$ は基本ベクトルである。 (同様の表示が他の軸方向についても成り立つ。)

オット、次の定理も必要になる。証明は位相空間論の講義を参照のこと

定理 5.4. \mathbb{R}^n の コンパクト集合 K 上の \mathbb{R}^m -値連続関数 f は一様連続である。すなわち、

$$\forall \epsilon > 0 \exists \delta > 0 \forall x, \forall y \in K(d(x,y) < \delta \implies d(f(x),f(y)) < \epsilon)$$

※レポート問題

(期限:次の講義の終了時まで。)

問題 **5.1.** $f(x,y,z) = \sin(xy)z$ の x,y,z に関する偏導関数をそれぞれ求めよ。