COMMUTATIVE ALGEBRA
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‘ 02. Localization ‘

DEFINITION 2.1. Let A be a commutative ring. Let S be its subset.
We say that S is multiplicative if
(1)1€8S
(2) z,ye S = awzyeS
holds.

DEFINITION 2.2. Let S be a multiplicative subset of a commutative
ring A. Then we define A[S™!] as

A{Xs;s € SH/({sXs —1;5s € S})

where in the above notation X is a indeterminate prepared for each
element s € S.) We denote by s a canonical map A — A[S™!].

LEMMA 2.3. Let S be a multiplicative subset of a commutative ring
A. Then the ring B = A[S™Y] is characterized by the following property:

Let C' be a ring, ¢ : A — C be a ring homomorphism such that
©(s) is invertible in C for any s € S. Then there exists a unique ring
homomorphism v = ¢[S™1] : B — C such that

p=1ouLg
holds.

COROLLARY 2.4. Let S be a multiplicative subset of a commutative
ring A. Let I be an ideal of A given by

I ={xz € I;3s € 5 such that sz =0}
Then I is an ideal of A. Let us put A= A/I, w: A — A the canonical
projection. Then:
(1) S = 7(S) is multiplicatively closed.
(2) We have
A[STY = A[STY
(3) tg: A — A[S™Y is injective.

There is another description of A[S™!]. Namely, We consider an
equivalence relateion ~g on a set S x A by

(Sl, a1> ~g (82, a2) < t(SlCLQ — SQCL1> = O(Ht € S)

We call the quotient space space S x A/ ~g as ST'A. The equiva-
lence class of (s,a) € S x A in S7'A is denoted by s~'a. Then it is
easy to introduce a ring structure of S~!'A and see that S~!'A actually
satisfies the universal property of A[S™!]. We thus have a canonical
isomorphism S™!'A = A[S™!].

EXAMPLE 2.5. Ay = A[S™ ] for S = {1, f, /2, £, f*,...}. The total
ring of quotients Q(A) is defined as A[S™!] for

S ={x € A;z is not a zero divisor of A}.
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When A is an integral domain, then Q(A) is the field of quotients of
A.

DEFINITION 2.6. Let A be a commutative ring. Let p be its prime
ideal. Then we define the localization of A with respect to p by

Ay =A[(A\p)7]

DEFINITION 2.7. Let S be a multiplicative subset of a commutative
ring A. Let M be an A-module we may define S™1M as

{(m/s);me M,se€ S}/ ~
where the equivalence relation ~ is defined by
(ml/sl) ~ (m2/32) <~ t(m182 — m281> =0 <E|t € S)

We may introduce a S~!A-module structure on S~™'M in an obvious
manner.

S~1M thus constructed satisfies an universality condition which the
reader may easily guess.

By a universality argument, we may easily see the following propo-
sition.

PROPOSITION 2.8. Let A be a commutative ring. Let S be a multi-
plicative subet of A. Let M be an A-module. Then we have an isomor-
phism

ST'A@, M =StM
of St A-modules.

PROPOSITION 2.9. Let A be a commutative ring. Let S be a mul-
tiplicative subet of A. Then the natural homomorphism A — S™1A is

flat.

2.1. local rings.

DEFINITION 2.10. A commutative ring A is said to be a local ring if
it has only one maximal ideal.

ExaAMPLE 2.11. We give examples of local rings here.

e Any field is a local ring.
e For any commutative ring A and for any prime ideal p € Spec(A),
the localization A, is a local ring with the maximal ideal pA,.

DEFINITION 2.12. Let A, B be local rings with maximal ideals m4, mpg
respectively. A local homomorphism ¢ : A — B is a homomorphism
which preserves maximal ideals. That means, a homomorphism ¢ is
said to be loc al if

pH(mp) =my
EXAMPLE 2.13 (of NOT being a local homomorphism).
Ly —Q

is not a local homomorphism.

LEMMA 2.14 (Zorn’s lemma). Let 8 be a partially ordered set. As-
sume that every totally ordered subset of 8 has an upper bound in 8.
Then 8§ has at least one maximal element.



