$ \mathbb{Z}_p$, $ \mathbb{Q}_p$, and the ring of Witt vectors

Yoshifumi Tsuchimoto

% latex2html id marker 743
\fbox{Playing with \lq\lq digits in base $n$''}

You should know that every positive integer may be written in decimal notation:

$\displaystyle (531)_{10}=5\times 10^2 +3\times 10^1+1\times 10^0.
$

Similarly, given any integer (“base”) % latex2html id marker 821
$ b\geq 2$, we may write a number as a string of digits in base $ n$. For example, we have

$\displaystyle (531)_{10}=1\times 7^3+3\times 7^2 + 5 \times 7 +6 \times 1=(1356)_7.
$

Similarly, we have

$\displaystyle (531)_{10}=(1356)_7=(1023)_8=1000010011_2=(213)_{16}.
$

You may also probably know (repeating) decimal expresions of positive rational numbers.

$\displaystyle (531.79)_{10}=5\times 10^2 +3\times 10^1+1\times 10^0+ 7\times 10^{-1}
+9\times 10^{-2}.
$

$\displaystyle (531.79)_{10}=(1356.\dot{5}34\dot{6})_{7}
=(1023.62\dot{4}365605075341217270\dot{2})_{8}
$

Now let us reverse the order of digits. Namely, we employ a notation like this1:

      $\displaystyle [97.135]_{10}=(531.79)_{10}$
      $\displaystyle [0.135]_{10}=(531)_{10}$
      $\displaystyle [123.456]_{10}=(654.321)_{10}$
      $\displaystyle \dots$

Let us do some calculation with the above notation:

      $\displaystyle [0.1]_{10}+ [0.9]_{10}=[0.01]_{10}$
      $\displaystyle [0.1]_{10}\times [0.9]_{10}=[0.9]_{10}$
      $\displaystyle [0.01]_{10}\times [0.09]_{10}=[0.009]_{10}$

You may recognize curious rules of computations. This curious notation will lead you to a new world called “the world of addic numbers”.

EXERCISE 0.1   Compute

$\displaystyle [0.12345]_8+[0.75432]_8
$

with our curious notation. Then do the same computation in the usual digital notation in base $ 10$.

LEMMA 0.1   For any prime number $ p$, $ \mathbb{Z}/p \mathbb{Z}$ is a field. (We denote it by $ \mathbb{F}_p$.)

LEMMA 0.2   Let $ p$ be a prime number. Let $ R$ be a commutative ring which contains $ \mathbb{F}_p$ as a subring. Then we have the following facts.
  1. $\displaystyle \underbrace{1+1+\dots+1 }_{\text{$p$-times}}=0
$

    holds in $ R$.
  2. For any $ x,y\in R$, we have

    $\displaystyle (x+y)^p=x^p +y^p
$

We would like to show existence of “finite fields”. A first thing to do is to know their basic properties.

LEMMA 0.3   Let $ F$ be a finite field (that means, a field which has only a finite number of elements.) Then:
  1. There exists a prime number $ p$ such that $ p=0$ holds in $ F$.
  2. $ F$ contains $ \mathbb{F}_p$ as a subfield.
  3. % latex2html id marker 898
$ q=\char93 (F)$ is a power of $ p$.
  4. For any $ x\in F$, we have % latex2html id marker 904
$ x^q-x=0$.
  5. The multiplicative group % latex2html id marker 906
$ (F_q)^{\times}$ is a cyclic group of order % latex2html id marker 908
$ q-1$.

The next task is to construct such fields. An important tool is the following lemma.

LEMMA 0.4   For any field $ K$ and for any non zero polynomial $ f\in K[X]$, there exists a field $ L$ containing $ L$ such that $ f$ is decomposed into linear factors in $ L$.

To prove it we use the following lemma.

LEMMA 0.5   For any field $ K$ and for any irreducible polynomial $ f\in K[X]$ of degree $ d>0$, we have the following.
  1. $ L=K[X]/(f(X))$ is a field.
  2. Let $ a$ be the class of $ X$ in $ L$. Then $ a$ satisfies $ f(a)=0$.

Then we have the following lemma.

LEMMA 0.6   Let $ p$ be a prime number. Let % latex2html id marker 957
$ q=p^r$ be a power of $ p$. Let $ L$ be a field extension of $ \mathbb{F}_p$ such that % latex2html id marker 965
$ X^q-X$ is decomposed into polynomials of degree $ 1$ in $ L$. Then
  1. % latex2html id marker 971
$\displaystyle L_1=\{x \in L; x^q=x\}
$

    is a subfield of $ L$ containing $ \mathbb{F}_p$.
  2. $ L_1$ has exactly % latex2html id marker 979
$ q$ elements.

Finally we have the following lemma.

LEMMA 0.7   Let $ p$ be a prime number. Let $ r$ be a positive integer. Let % latex2html id marker 990
$ q=p^r$. Then we have the following facts.
  1. There exists a field which has exactly % latex2html id marker 992
$ q$ elements.
  2. There exists an irreducible polynomial $ f$ of degree $ r$ over $ \mathbb{F}_p$.
  3. % latex2html id marker 1000
$ X^q-X$ is divisible by the polynomial $ f$ as above.
  4. For any field $ K$ which has exactly % latex2html id marker 1006
$ q$-elements, there exists an element $ a\in K$ such that $ f(a)=0$.

In conclusion, we obtain:

THEOREM 0.8   For any power % latex2html id marker 1017
$ q$ of $ p$, there exists a field which has exactly % latex2html id marker 1021
$ q$ elements. It is unique up to an isomorphism. (We denote it by % latex2html id marker 1023
$ \mathbb{F}_q$.)