$ \mathbb{Z}_p$, $ \mathbb{Q}_p$, and the ring of Witt vectors

No.20: Supplement.

LEMMA 20.1   Let $ A$ be a commutative ring. Let $ n$ be a positive integer. Then:
  1. $ V_n(\mathcal W_1(A))$ is an ideal of $ \mathcal W_1(A)$.
  2. If $ n$ is invertible in $ A$, then

    $\displaystyle e_n\cdot \mathcal W_1(A)= V_n(\mathcal W_1(A)).
$

DEFINITION 20.2   For any commutative ring $ A$, let us define $ I(A)$ to be the submodule of $ \mathcal W_1(A)$ generated by all the images $ V_n(\mathcal W_1(A))$, where $ n$ is a positive integer which is not divisible by $ p$:

$\displaystyle I(A)= (\sum_{ p \nmid n} V_n (\mathcal W_1(A)))
$

Let us denote by $ \bar I(A)$ its closure. Then we define:

$\displaystyle \mathcal W^{(p)}(A) \overset{\rm {def}}{=}
\mathcal W_1(A) /
\overline{I(A)}
$

PROPOSITION 20.3   Let us define a map

$\displaystyle \Phi:A^{\mathbb{N}} \ni (a_i)
\mapsto \sum_{i=0}^\infty (1-a_i T^{p^i})_W \in \mathcal W^{(p)}(A) .
$

Then $ \Phi$ is a bijection.

PROOF.. Surjectivity: Every element $ (f)_W$ of $ \mathcal W_1(A)$ may be written as $ (f)_W= \sum_j (1-c_j T^j)_W $. Knowing that $ (1-c_j T^j)_W$ is an element of $ I(A)$ whenever $ j$ is not divisible by $ p$, we see that $ \Phi((c_{p^i})_{i=0}^\infty)=(f)_W$.

Injectivity: Assume $ \Phi((a_i))=\Phi((b_i))$. Let $ i_0$ be the smallest integer $ i$ such that % latex2html id marker 733
$ a_i \neq b_i$. Then by subtraction we obtain an equation

% latex2html id marker 735
$\displaystyle \sum_{i\geq i_0} (1-a_i T^{p^i})_W
=
\sum_{i\geq i_0} (1-b_i T^{p^i})_W
$

in $ \mathcal W^{(p)}(A)$.

$\displaystyle (1-a_{i_0} T^{p^{i_0}}+$higher order terms$\displaystyle )_W
=(1-b_{i_0} T^{p^{i_0}}+$higher order terms$\displaystyle )_W
$

Since we know that the terms of order $ p^{i_0}$ are not affected by additions of elements of $ \overline{I(A)}$, we see $ a_{i_0}=b_{i_0}$, which is a contradiction.

% latex2html id marker 708
$ \qedsymbol$