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In this note, we will calculate the ith sectional class cli(X,L) of some special polarized manifolds
(X,L).

1 Preliminaties

Here we are going to calculate the ith sectional class cli(X,L) of some special polarized manifolds
(X,L) with n = dim X ≥ 3 by using its ith sectional Euler number ei(X,L) (see [4, Definition 3.1
(1)]).

Definition 1.1 Let (X,L) be a polarized manifold of dimension n. Then for every integer i with
0 ≤ i ≤ n the ith sectional class of (X,L) is defined by the following.

cli(X,L) :=

 e0(X,L), if i = 0,
(−1){e1(X,L) − 2e0(X,L)}, if i = 1,
(−1)i{ei(X,L) − 2ei−1(X,L) + ei−2(X,L)}, if 2 ≤ i ≤ n.

Definition 1.2 Let (X,L) be a polarized manifold of dimension n.

(i) The deficiency of (X,L) is defined by the following.

def(X,L) := min{ i | 0 ≤ i ≤ n, cln−i(X,L) ̸= 0}

(ii) The codegree of (X,L) is defined by the following.

codeg(X,L) := cln−k(X,L),

where k = def(X,L).

Notation 1.1 (1) Let (X,L) be a hyperquadric fibration over a smooth curve C. We put
E := f∗(L). Then E is a locally free sheaf of rank n + 1 on C. Let π : PC(E) → C be the
projective bundle. Then X ∈ |2H(E) + π∗(B)| for some B ∈ Pic(C) and L = H(E)|X , where
H(E) is the tautological line bundle of PC(E). We put e := deg E and b := deg B.

(2) (See [2, (13.10) Chapter II].) Let (M,A) be a P2-bundle over a smooth curve C and A|F =
OP2(2) for any fiber F of it. Let f : M → C be the fibration and E := f∗(KM + 2A). Then
E is a locally free sheaf of rank 3 on C, and M ∼= PC(E) such that H(E) = KM + 2A. In this
case, A = 2H(E) + f∗(B) for a line bundle B on C, and by the canonical bundle formula
KM = −3H(E) + f∗(KC + detE). Here we set e := deg E and b := deg B.
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Definition 1.3 Let F be a vector bundle on a smooth projective variety X. Then for every integer
j with j ≥ 0, the jth Segre class sj(F) of F is defined by the following equation: ct(F∨)st(F) = 1,
where F∨ := HomOX

(F ,OX), ct(F∨) is the Chern polynomial of F∨ and st(F) =
∑

j≥0 sj(F)tj .

Remark 1.1 (a) Let F be a vector bundle on a smooth projective variety X. Let s̃j(F) be the
jth Segre class which is defined in [7, Chapter 3]. Then sj(F) = s̃j(F∨).
(b) For every integer i with 1 ≤ i, si(F) can be written by using the Chern classes cj(F) with
1 ≤ j ≤ i. (For example, s1(F) = c1(F), s2(F) = c1(F)2 − c2(F), and so on.)

2 Calculations

Example 2.1 (i) The case where (X,L) is (Pn,OPn(1)).
Then by [6, Example 3.1] we have

cli(X,L) =
{

1, if i = 0,
0, if i ≥ 1.

(ii) The case where (X,L) is (Qn,OQn(1)).
Then by [6, Example 3.2] we have cli(X,L) = 2 for 0 ≤ i ≤ n. In this case, def(X,L) = 0 and
codeg(X,L) = 2.
(iii) The case where (X,L) is (P4,OP4(2)).
Then by [6, Example 3.3] we have

cli(X,L) =


16, if i = 0,
40, if i = 1,
40, if i = 2,
20, if i = 3,
5, if i = 4.

In this case, def(X,L) = 0 and codeg(X,L) = 5.
(iv) The case where (X,L) is (Q3,OQ3(2)).
Then by [6, Example 3.4] we have

cli(X,L) =


16, if i = 0,
40, if i = 1,
40, if i = 2,
20, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 20.
(v) The case where (X,L) is (P3,OP3(3)).
Then by [6, Example 3.5] we have

cli(X,L) =


27, if i = 0,
72, if i = 1,
72, if i = 2,
32, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 32.
(vi) The case where (X,L) is a Veronese fibration over a smooth curve C.
Here we use Notation 1.1 (2). Then by [6, Example 3.6] we have

cli(X,L) =


8e + 12b, if i = 0,
20e + 28b, if i = 1,
36e + 47b, if i = 2,
41e + 52b, if i = 3.
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First we note that

8e + 12b = L3 (1)
2g(C) − 2 + e + 2b = 0 (2)
g(X,L) = 1 + 2e + 2b (3)

Here we set L3 = 4m. Then m is an integer with m ≥ 1. We see from (1) and (2) that b =
4(1 − g(C)) − m and e = 6(g(C) − 1) + 2m. Therefore

cl1(X,L) = 20e + 28b = 12m + 8(g(C) − 1) > 0.

Next we consider cl2(X,L). Then

cl2(X,L) = 36e + 47b = 25m + 28(g(C) − 1).

If g(C) = 0 and m = 1, then we have e = −4 and b = 3. But then by (3) we have g(X,L) = −1 < 0
and this is impossible. Hence g(C) ≥ 1 or m ≥ 2, and we get

cl2(X,L) ≥ 25m + 28(g(C) − 1) ≥ 22.

Finally we consider cl3(X,L). Then

cl3(X,L) = 41e + 52b = 30m + 38(g(C) − 1).

By the same argument as above, the case where g(C) = 0 and m = 1 does not occur. Hence
g(C) ≥ 1 or m ≥ 2, and we get

cl3(X,L) ≥ 30m + 38(g(C) − 1) ≥ 22.

Therefore def(X,L) = 0 and codeg(X,L) = 30m + 38(g(C) − 1).
(vii) The case where (X,L) is a Del Pezzo manifold with n = dim X ≥ 3.
Here we note that by [2, (8.11) Theorem], we have Ln ≤ 8 and (X,L) is one of the following:

(vii.1) (X,L) ∼= (P3,OP3(2)).
Then by [6, Example 3.7 (3.7.1)] we have

cli(X,L) =


8, if i = 0,
16, if i = 1,
12, if i = 2,
4, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 4.

(vii.2) X is the blowing up of P3 at a point and L = π∗(OP3(2)) − E, where π : X → P3 is its
birational morphism and E is the exceptional divisor. Then by [6, Example 3.7 (3.7.2)] we
have

cli(X,L) =


7, if i = 0,
14, if i = 1,
12, if i = 2,
4, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 4.

(vii.3) (X,L) is either

(P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)), (P2 × P2,⊗2

i=1p
∗
iOP2(1)) or (PP2(TP2),H(TP2))

where pi is the ith projection and TP2 is the tangent bundle of P2.
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(vii.3.1) The case where (X,L) ∼= (P1 × P1 × P1,⊗3
i=1p

∗
iOP1(1)).

Then by [6, Example 3.7 (3.7.3.1)] we have

cli(X,L) =


6, if i = 0,
12, if i = 1,
12, if i = 2,
4, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 4.

(vii.3.2) The case where (X,L) ∼= (P2 × P2,⊗2
i=1p

∗
iOP2(1)).

Then by [6, Example 3.7 (3.7.3.2)] we have

cli(X,L) =


6, if i = 0,
12, if i = 1,
12, if i = 2,
6, if i = 3,
3, if i = 4.

In this case, def(X,L) = 0 and codeg(X,L) = 3.

(vii.3.3) The case where (X,L) ∼= (PP2(TP2),H(TP2)).
Then by [6, Example 3.7 (3.7.3.3)] we have

cli(X,L) =


6, if i = 0,
12, if i = 1,
12, if i = 2,
6, if i = 3.

In this case, def(X,L) = 0 and codeg(X,L) = 6.

(vii.4) The case where (X,L) is a linear section of the Grassmann variety Gr(5, 2) parametrizing
lines in P4, embedded in P9 via the Plücker embedding. Then 3 ≤ n ≤ 6 and Ln = 5.

By [6, Example 3.7 (3.7.4)] we have

cli(X,L) =



5, if i = 0,
10, if i = 1,
12, if i = 2,
10, if i = 3,
5, if i = 4 and 4 ≤ n ≤ 6,
0, if i = 5 and 5 ≤ n ≤ 6,
0, if i = 6 and n = 6.

In this case, if n = 6 (resp. 5, 4, 3), then def(X,L) = 2 (resp. 1, 0, 0) and codeg(X,L) = 5
(resp. 5, 5, 10).

(vii.5) The case where (X,L) is a complete intersection of two hyperquadrics in Pn+2.

Then by [6, Example 3.7 (3.7.5)] we have

cli(X,L) = 4i + 4.

In this case, def(X,L) = 0 and codeg(X,L) = 4n + 4.
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(vii.6) The case where X is a hypercubic in Pn+1 and L = OX(1).

Then by [6, Example 3.7 (3.7.6)] we have

cli(X,L) = 3 · 2i.

In this case, def(X,L) = 0 and codeg(X,L) = 3 · 2n.

In general, the following holds by Definitions 1.1, 1.2 and [6, Lemma 3.3] (see also [8, (9)
Proposition in II]).

Proposition 2.1 If X is a hypersurface of degree m in Pn+1, then

cli(X,L) = m(m − 1)i, def(X,L) = 0 and codeg(X,L) = m(m − 1)n.

(vii.7) The case where X is a double covering of Pn branched along a smooth hypersurface of degree
4, and L is the pull-back of OPn(1).

Then by [6, Example 3.7 (3.7.7)] we have

cli(X,L) =
{

2, if i = 0,
4 · 3i−1, if i ≥ 1.

In this case, def(X,L) = 0 and codeg(X,L) = 4 · 3n−1.

In general, we can prove the following by using [6, Lemma 3.4].

Proposition 2.2 If X is a double covering of Pn branched along a smooth hypersurface of
degree m, and L is the pull back of OPn(1), then for i ≥ 1 we have

cli(X,L) = m(m − 1)i−1, def(X,L) = 0 and codeg(X,L) = m(m − 1)n−1.

(vii.8) The case where (X,L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3, 2, 1, . . . , 1).

Then by [6, Example 3.7 (3.7.8)] we have

cli(X,L) =

 1, if i = 0,
2, if i = 1,
12 · 5i−2, if i ≥ 2.

In this case, def(X,L) = 0 and codeg(X,L) = 12 · 5n−2.

(viii) The case where (X,L) is a hyperquadric fibration over a smooth curve C.
Here we use notation in Notation 1.1 (1). Then by [6, Example 3.8] we have

cli(X,L) =

 2e + b, if i = 0,
6e + 4b + 4(g(C) − 1), if i = 1,
8e + 4ib + 4(g(C) − 1), if i ≥ 2.

Here we consider a lower bound of cli(X,L) for i ≥ 1.

Proposition 2.3 Let (X,L) be a hyperquadric fibration over a smooth curve C. If i ≥ 1, then
cli(X,L) ≥ 4.
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Proof. Then we use the following inequalities.

2e + b > 0 (4)
2e + (n + 1)b ≥ 0 (5)

(A) First we consider the case i = 1. Then g(X,L) ≥ 2 holds because (X,L) is a hyperquadric
fibration over a smooth curve. Hence by definition we have cl1(X,L) = 2(g(X,L) + Ln − 1) ≥ 4.
(B) Next we consider the case i ≥ 2.
(B.1) If b < 0, then by (5) we have

2e + ib = 2e + (n + 1)b − (n + 1 − i)b (6)
≥ −(n + 1 − i)b
≥ n + 1 − i.

Hence

cli(X,L) = 8e + 4ib + 4(g(C) − 1)
= 4(2e + ib) + 4(g(C) − 1)
≥ 4(n + 1 − i) + 4(g(C) − 1)
= 4(n − i) + 4g(C)
≥ 0.

If cli(X,L) = 0, then i = n and g(C) = 0. Then by (5) we have 0 = cli(X,L) = 4(2e + (n +
1)b)− 4b− 4 ≥ −4b− 4 ≥ 0 and we get 2e + (n + 1)b = 0 and b = −1. Since g(C) = 0, we see that
E can be expressed as

E =
n⊕

i=0

O(ei).

We may assume that e0 ≤ · · · ≤ en. Since b = −1, we see that e0 ≥ 1 by the same argument as in
the proof of [1, Lemma (3.19)]. Hence

e =
n∑

i=0

ei ≥ n + 1.

But this is impossible because

e = − (n + 1)
2

b =
(n + 1)

2
.

Hence cli(X,L) > 0 in this case.
(B.2) If b ≥ 0, then by (4) we have 2e + ib = 2e + b + (i − 1)b ≥ 1 + (i − 1)b. Hence

cli(X,L) = 8e + 4ib + 4(g(C) − 1)
≥ 4(i − 1)b + 4g(C)
≥ 0.

If cli(X,L) = 0, then b = 0 and g(C) = 0. Then we have cli(X,L) = 8e − 4. But since
cli(X,L) = 0, we have e = 1

2 and this is impossible. Therefore cli(X,L) > 0 holds in this case,
too.

Since cli(X,L) for i ≥ 2 is divided by 4, we see that cli(X,L) ≥ 4.

Hence we see from Proposition 2.3 that def(X,L) = 0 and codeg(X,L) = 8e+4nb+4(g(C)−1).

6



(ix) The case where (X,L) is a scroll over a smooth curve C with n = dimX ≥ 3. Then there
exists an ample vector bundle E on C of rank n such that X = PS(E) and L = H(E).
Then by [6, Example 3.9] we have

cli(X,L) =


s1(E), if i = 0,
2g(C) − 2 + 2c1(E), if i = 1,
c1(E), if i = 2,
0, if i ≥ 3.

In this case, def(X,L) = n − 2 and codeg(X,L) = c1(E).

(x) The case where (X,L) is (PS(E), H(E)), where S is a smooth surface and E is an ample vector
bundle of rank n − 1. Then by [6, Example 3.10] we have

cli(X,L) =



s2(E), if i = 0,
(s1(E) + KS)s1(E) + 2s2(E), if i = 1,
c2(S) + 3c1(E)2 + 2KSc1(E), if i = 2,
2c2(E) + (c1(E) + KS)c1(E), if i = 3,
c2(E), if i = 4 and n ≥ 4,
0, if i ≥ 5 and n ≥ 5.

(x.1) Assume that KS + c1(E) is not nef. Here we note that rank E ≥ 2 = dim S. Then by a result
of [9, Theorem 1] we see that (S, E) ∼= (P2,OP2(1) ⊕OP2(1)). In this case, c2(S) = 3, c1(E)2 = 4,
KSc1(E) = −6, c2(E) = 1, s2(E) = 3. So we get the following.

cli(X,L) =


3, if i = 0,
4, if i = 1,
3, if i = 2,
0, if i = 3.

Hence in this case def(X,L) = 1 and codeg(X,L) = 3.

Remark 2.1 Here we note that if (S, E) ∼= (P2,OP2(1) ⊕OP2(1)), then (X,L) = (PS(E),H(E)) is
a scroll over P1.

(x.2) Next we consider the case where KS + c1(E) is nef. Then the following holds.

Claim 2.1 cli(X,L) > 0 for every 0 ≤ i ≤ min{4, n}.

Proof. First of all, since E is ample, we see from [7, Example 12.1.7] and Remark 1.1 that
cl0(X,L) = s2(E) > 0. Next we consider the case of i ≥ 1. (KS + c1(E))c1(E) ≥ 0 because
KS + c1(E) is nef. Moreover c2(E) > 0 since E is ample. Hence cl1(X,L) > 0, cl3(X,L) > 0
and cl4(X,L) > 0 for n ≥ 4. (Here we note that c1(E) = s1(E).) Finally we consider the case of
cl2(X,L). We note the following.

(a) If κ(S) ≥ 0, then c2(S) ≥ 0.

(b) If κ(S) = −∞ and q(S) = 0, then c2(S) ≥ 3.

(c) If κ(S) = −∞ and q(S) ≥ 1, then c2(S) ≥ 4(1 − q(S)).

So if κ(S) ≥ 0 or κ(S) = −∞ and q(S) = 0, then

cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E)
≥ c1(E)2 > 0.
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If κ(S) = −∞ and q(S) ≥ 1, then

cl2(X,L) = c2(S) + 3c1(E)2 + 2KSc1(E)
≥ c1(E)2 + 4(g(S, c1(E)) − q(S)).

Since κ(S) = −∞, we have g(S, c1(E)) ≥ q(S) by [3, Theorem 2.1]. Therefore we get cl2(X,L) ≥
c1(E)2 > 0.

Therefore, in this case, we get def(X,L) = max{0, 4 − n} and

codeg(X,L) =
{

2c2(E) + (c1(E) + KS)c1(E), if n = 3,
c2(E), if n ≥ 4.

In general, if X is a projective bundle over a smooth projective variety Y of dimension m with
dimX ≥ 2m and L is the tautological line bundle H(E), then we can calculate def(X,L) and
codeg(X,L).

Proposition 2.4 Let X be an n-dimensional projective bundle PY (E) over a smooth projective
variety Y of dimension m and let H(E) be the tautological line bundle. Assume that n ≥ 2m.
Then def(X,H(E)) = n − 2m and codeg(X,H(E)) = cm(E).

Proof. If j − 2 ≥ 2m − 1, that is, j ≥ 2m + 1, then by [5, Theorem 3.1 (3.1.1)] we have

clj(PY (E),H(E)) = (−1)j(ej(PY (E),H(E)) − 2ej−1(PY (E),H(E)) + ej−2(PY (E),H(E)))
= (−1)j((j − m + 1)cm(Y ) − 2(j − m)cm(Y ) + (j − m − 1)cm(Y ))
= 0.

If j = 2m, then by [5, Theorem 3.1 (3.1.1) and (3.1.2)]

cl2m(PY (E),H(E)) = (−1)2m(e2m(PY (E),H(E)) − 2e2m−1(PY (E),H(E)) + e2m−2(PY (E),H(E)))
= ((m + 1)cm(Y ) − 2mcm(Y ) + (m − 1)cm(Y ) + cm(E))
= cm(E) > 0.

Hence by Definition 1.2 we have

def(X,H(E)) = min{ i | cln−i(X,H(E)) ̸= 0} = n − 2m.

codeg(X,H(E)) = cm(E).

This completes the proof.

Assume that (X,L) is a Pn−3-bundle over a smooth projective variety Y with n ≥ 4 and
dimY = 3. Let E be an ample vector bundle on Y such that X ∼= PY (E) and L = H(E). Then by
[5, Theorem 3.1] cli(X,L) is the following.

8



cli(X,L) =



s3(E), if i = 0,

3s3(E) + (s1(E) + KY )s2(E), if i = 1,

3s3(E) + 12(s1(E) + KY )s2(E)
+(s1(E) + KY )s1(E)2 + c2(Y )s1(E), if i = 2,

−c3(Y ) + 2c3(E) − 2c1(E)c2(E) + 4c1(E)3

+3KY c1(E)2 + 2c2(Y )c1(E), if i = 3,

3c3(E) + 12(c1(E) + KY )c2(E)
+(c1(E) + KY )c1(E)2 + c2(Y )c1(E), if i = 4,

3c3(E) + (c1(E) + KY )c2(E), if i = 5 and n ≥ 5,

c3(E), if i = 6 and n ≥ 6,

0, if i ≥ 7 and n ≥ 7.

By considering the above results, we can propose the following conjecture.

Conjecture 2.1 Assume that (X,L) is a Pn−m-bundle over a smooth projective variety Y with
dimY = m. Let E be an ample vector bundle on Y such that X ∼= PY (E) and L = H(E). Assume
that n ≥ 2m. For any integer i with 0 ≤ i ≤ m we set

Fi(s1(E), . . . , sm(E)) := cli(X,L).

Then for any integer j with m ≤ j ≤ 2m we have

clj(X,L) = F2m−j(c1(E), . . . , cm(E)).

In particular
Fm(s1(E), . . . , sm(E)) = Fm(c1(E), . . . , cm(E)).

Remark 2.2 This conjecture is true for the case where m = 1, 2 and 3.

By looking at the above examples, we see that cli+1(X,L) = 0 if cli(X,L) = 0. So we can
propose the following problem.

Problem 2.1 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0 ≤ i ≤ n − 1. Is it true that cli+1(X,L) = 0 if cli(X,L) = 0 ?
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