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In this note, we will calculate the ith sectional class cl; (X, L) of some special polarized manifolds
(X,L).

1 Preliminaties

Here we are going to calculate the ith sectional class cl;(X, L) of some special polarized manifolds
(X, L) with n = dim X > 3 by using its ith sectional Euler number ¢;(X, L) (see [4, Definition 3.1

(W)

Definition 1.1 Let (X, L) be a polarized manifold of dimension n. Then for every integer ¢ with
0 <4 < n the ith sectional class of (X, L) is defined by the following.

eo(X, L), if i =0,
i(X,L) = { (~1{e(X,L) — 2eo(X,L)}, ifi=1,
(—1){es(X,L) — 2e; 1 (X, L) + ¢, o(X, L)}, if2<i<n.

Definition 1.2 Let (X, L) be a polarized manifold of dimension n.
(i) The deficiency of (X, L) is defined by the following.

def(X,L) :=min{ i | 0 <i <mn, cl,,—;(X, L) # 0}

(ii) The codegree of (X, L) is defined by the following.
codeg(X, L) :=cl,—r(X, L),
where k = def(X, L).

Notation 1.1 (1) Let (X,L) be a hyperquadric fibration over a smooth curve C. We put
€ := f.(L). Then €& is a locally free sheaf of rank n + 1 on C. Let 7 : Pc(€) — C be the
projective bundle. Then X € [2H(E) + n*(B)| for some B € Pic(C) and L = H(E)|x, where
H(&) is the tautological line bundle of P (€). We put e := deg € and b := deg B.

(2) (See [2, (13.10) Chapter II].) Let (M, A) be a P2-bundle over a smooth curve C and A|p =
Op2(2) for any fiber F' of it. Let f: M — C be the fibration and & := f. (K + 2A). Then
€ is a locally free sheaf of rank 3 on C, and M = P¢(€) such that H(E) = Ky +2A. In this
case, A = 2H(E) + f*(B) for a line bundle B on C, and by the canonical bundle formula
Ky = —3H(E) + f*(K¢ + det€). Here we set e := deg & and b := deg B.



Definition 1.3 Let F be a vector bundle on a smooth projective variety X. Then for every integer
j with j >0, the jth Segre class sj(F) of F is defined by the following equation: ¢;(F")s;(F) = 1,
where FV := Homo, (F,Ox), ¢;(F") is the Chern polynomial of F¥ and s;(F) = Y, 5;(F)t/.

Remark 1.1 (a) Let F be a vector bundle on a smooth projective variety X. Let §;(F) be the
jth Segre class which is defined in [7, Chapter 3]. Then s,(F) = §;(F").

(b) For every integer ¢ with 1 < 4, s;(F) can be written by using the Chern classes ¢;(F) with
1 < j <i. (For example, s1(F) = ¢1(F), s2(F) = ¢1(F)? — ca(F), and so on.)

2 Calculations

Example 2.1 (i) The case where (X, L) is (P, Opn(1)).
Then by [6, Example 3.1] we have

1, ifi=0,
d"(X’L){ 0, ifi>1.

(i) The case where (X, L) is (Q", Ognr(1)).

Then by [6, Example 3.2] we have cl;(X,L) = 2 for 0 < i < n. In this case, def(X,L) = 0 and
codeg(X,L) = 2.

(iii) The case where (X, L) is (P4, Ops(2)).

Then by [6, Example 3.3] we have

16, ifi=0,
40, ifi=1,
i(X,L)=1{ 40, ifi=2,
20, ifi=3,
5, if i = 4.

In this case, def(X, L) = 0 and codeg(X, L) = 5.
(iv) The case where (X, L) is (Q3, Ogs(2)).
Then by [6, Example 3.4] we have

16, ifi=0,
40,  ifi=1,
ci(X, L) =1 4 ifi=2
20,  ifi=3.

In this case, def(X, L) = 0 and codeg(X, L) = 20.
(v) The case where (X, L) is (P3, Ops(3)).
Then by [6, Example 3.5] we have

27,  ifi=0,
72, ifi=1,
cli(X, L) = 72,  ifi=2,
32, ifi=3.

In this case, def(X, L) = 0 and codeg(X, L) = 32.
(vi) The case where (X, L) is a Veronese fibration over a smooth curve C.
Here we use Notation 1.1 (2). Then by [6, Example 3.6] we have

8e + 12, if i =0,
20e +28b,  ifi=1,
36e +47b,  ifi=2,
4le +52b,  ifi=3.

o;(X,L) =



First we note that

8e + 12b = L3 (1)
29(C)—2+e+2b=0 (2)
g(X,L) =14 2e+2b (3)

Here we set L3 = 4m. Then m is an integer with m > 1. We see from (1) and (2) that b =
4(1 — g(C)) —m and e = 6(g(C) — 1) + 2m. Therefore

cli (X, L) =20e+28b=12m + 8(g(C) — 1) > 0.
Next we consider cla(X, L). Then
cla(X, L) = 36e + 47b = 256m + 28(g(C) — 1).

If g(C) = 0 and m = 1, then we have e = —4 and b = 3. But then by (3) we have g(X,L) = -1 <0
and this is impossible. Hence g(C) > 1 or m > 2, and we get

clo(X, L) > 25m + 28(g(C) — 1) > 22.
Finally we consider cls(X, L). Then
cls(X, L) = 4le+ 52b = 30m + 38(g(C) — 1).

By the same argument as above, the case where g(C) = 0 and m = 1 does not occur. Hence
g(C)>1or m > 2, and we get

cl3(X, L) > 30m + 38(g(C) — 1) > 22.

Therefore def(X, L) = 0 and codeg(X, L) = 30m + 38(g(C) — 1).
(vii) The case where (X, L) is a Del Pezzo manifold with n = dim X > 3.
Here we note that by [2, (8.11) Theorem], we have L™ < 8 and (X, L) is one of the following:

(vii.1) (X, L) = (P3, Ops(2)).
Then by [6, Example 3.7 (3.7.1)] we have

8, ifi=0,
16, ifi=1,
chi(X,L) =1 15 if =2
4, ifi =3

In this case, def(X, L) = 0 and codeg(X, L) = 4.

(vii.2) X is the blowing up of P3 at a point and L = 7*(Ops(2)) — E, where m : X — P3 is its
birational morphism and E is the exceptional divisor. Then by [6, Example 3.7 (3.7.2)] we

have
7, if i =0,
14, ifi=1,
(X L)=1 19 ii—o
4, if i = 3.

In this case, def(X, L) = 0 and codeg(X, L) = 4.
(vii.3) (X, L) is either
(P! x P* x P1, @2, p; Op1 (1)), (P? x P?, @7, p; Op2(1)) or (Pp2(Tp2), H(Tp2))

where p; is the ith projection and Tp= is the tangent bundle of P2,



(vii.3.1) The case where (X, L) = (P! x P! x P, ®3_;pfOpi(1)).
Then by [6, Example 3.7 (3.7.3.1)] we have

6, if i =0,
12, ifi=1,
cli(X, L) = 12, ifi=2,
4, if i = 3.

In this case, def(X, L) = 0 and codeg(X, L) = 4.
(vii.3.2) The case where (X, L) 2 (P? x P2, ®2_;p; Opz(1)).
Then by [6, Example 3.7 (3.7.3.2)] we have

6, if i =0,
12, ifi=1,
(X, L)={ 12, ifi=2,
6, if i = 3,
3, if i = 4.

In this case, def(X, L) = 0 and codeg(X, L) = 3.
(vii.3.3) The case where (X, L) & (Ppz (Tp2), H(Tpz2)).
Then by [6, Example 3.7 (3.7.3.3)] we have

6, ifi=0,
12, ifi=1,
L) =90 19) =2
6,  ifi=3.

In this case, def(X, L) = 0 and codeg(X, L) = 6.

(vii.4) The case where (X, L) is a linear section of the Grassmann variety Gr(5,2) parametrizing
lines in P*, embedded in P? via the Pliicker embedding. Then 3 < n < 6 and L™ = 5.

By [6, Example 3.7 (3.7.4)] we have

5, if1=0,
10, ifi=1,
12, if 1 =2,

cl;(X,L) =< 10, if 1 = 3,
5, ifi=4and 4 <n <6,
0, ifi=5and 5 <n <6,
0, ifi=6 and n =6.

In this case, if n = 6 (resp. 5, 4, 3), then def(X, L) = 2 (resp. 1, 0, 0) and codeg(X,L) =5
(resp. 5, 5, 10).

(vii.5) The case where (X, L) is a complete intersection of two hyperquadrics in P"*2,
Then by [6, Example 3.7 (3.7.5)] we have

l;(X,L) = 4i + 4.

In this case, def(X, L) = 0 and codeg(X, L) = 4n + 4.



(vii.6)

(Vii.7)

(vii.8)

The case where X is a hypercubic in P"*! and L = Ox(1).
Then by [6, Example 3.7 (3.7.6)] we have

cli(X,L) =32

In this case, def(X, L) = 0 and codeg(X, L) = 3 - 2".
In general, the following holds by Definitions 1.1, 1.2 and [6, Lemma 3.3] (see also [8, (9)
Proposition in IT}).

Proposition 2.1 If X is a hypersurface of degree m in P"+1, then
cli(X,L) = m(m —1)%, def(X,L) = 0 and codeg(X, L) = m(m — 1)".

The case where X is a double covering of P branched along a smooth hypersurface of degree
4, and L is the pull-back of Opn(1).

Then by [6, Example 3.7 (3.7.7)] we have

2, if i =0,
Cli(X’L):{ 4-371 ifi> 1

In this case, def(X, L) = 0 and codeg(X, L) =4 3"~ 1.

In general, we can prove the following by using [6, Lemma 3.4].

Proposition 2.2 If X is a double covering of P™ branched along a smooth hypersurface of
degree m, and L is the pull back of Opn (1), then for i > 1 we have

cli(X,L) = m(m —1)""!, def(X,L) = 0 and codeg(X, L) = m(m — 1)""*.
The case where (X, L) is a weighted hypersurface of degree 6 in the weighted projective space
P(3,2,1,...,1).
Then by [6, Example 3.7 (3.7.8)] we have
1, it i =0,
c;(X,L) =< 2, ifi=1,
12-5172, ifi > 2.

In this case, def(X, L) = 0 and codeg(X, L) = 12-5"2.

(viii) The case where (X, L) is a hyperquadric fibration over a smooth curve C.
Here we use notation in Notation 1.1 (1). Then by [6, Example 3.8] we have

2¢ + b, ifi=0,
(X, L) =4 6e+4b+4(g(C)—1), ifi=1,
8¢+ 4ib+4(g(C) — 1),  ifi>2.

Here we consider a lower bound of cl;(X, L) for i > 1.

Proposition 2.3 Let (X, L) be a hyperquadric fibration over a smooth curve C. If i > 1, then
cl;(X,L) > 4.



Proof. Then we use the following inequalities.

2e+b > 0 (4)
2+ (m+1)b > 0 (5)

(A) First we consider the case i = 1. Then ¢(X,L) > 2 holds because (X, L) is a hyperquadric
fibration over a smooth curve. Hence by definition we have cly (X, L) = 2(g(X,L) + L™ — 1) > 4.
(B) Next we consider the case i > 2.

(B.1) If b < 0, then by (5) we have

2e+ib = 2e+(n+1b—(n+1-14)b (6)
—(n+1-14)b
n+1-—i.

(AVARYS

Hence

ci(X,L) = 8e+4ib+4(g(C

4(2e +ib) + 4(g(
dn+1—1) + 4(
4(n —1) +49(C)
0.

)—1)
¢)-1
9(C) = 1)

v 1

Y

If cl;(X,L) = 0, then i = n and g(C') = 0. Then by (5) we have 0 = cl;(X,L) = 4(2e + (n +
1)b) —4b—4 > —4b—4 > 0 and we get 2e+ (n+1)b = 0 and b = —1. Since g(C) = 0, we see that

& can be expressed as
£=EPole).
i=0

We may assume that eg < --- <e,. Since b = —1, we see that eg > 1 by the same argument as in
the proof of [1, Lemma (3.19)]. Hence

e:zn:eiZn—kl.
i=0

But this is impossible because
.o _(n—l—l)bi (n+1)

2 2

Hence cl;(X, L) > 0 in this case.
(B.2) If b > 0, then by (4) we have 2e +ib=2e+ b+ (i — 1)b > 1+ (i — 1)b. Hence

c,(X,L) = 8e+4ib+4(g(C)—1)
> 4(i—1)b+49(C)
> 0.

If cl;(X,L) = 0, then b = 0 and ¢g(C) = 0. Then we have cl;(X,L) = 8¢ — 4. But since
cl;(X,L) = 0, we have e = % and this is impossible. Therefore cl;(X, L) > 0 holds in this case,

too.
Since cl; (X, L) for ¢ > 2 is divided by 4, we see that cl;(X, L) > 4. O

Hence we see from Proposition 2.3 that def(X, L) = 0 and codeg(X, L) = 8e+4nb+4(g(C)—1).



(ix) The case where (X, L) is a scroll over a smooth curve C' with n = dim X > 3. Then there
exists an ample vector bundle £ on C' of rank n such that X = Pg(€) and L = H(E).
Then by [6, Example 3.9] we have

s1(€), ifi =0,

_ ) 29(C)—242¢1(6),  ifi=1,
L(X L) =9 ¢ (e, ifi=2,
0, if i > 3.

In this case, def(X, L) = n — 2 and codeg(X, L) = ¢1(E).

(x) The case where (X, L) is (Ps(€), H(E)), where S is a smooth surface and £ is an ample vector
bundle of rank n — 1. Then by [6, Example 3.10] we have

82(5), leZO,
(51(5)+K5)51(5)+2$2(5), le:].,
C2(S)+3Cl(5)2+2KSCl(6), 1fl=2,

L) =Y 20,(8) + (e1(€) + Ko)(E), i =3,
c2(E), ifi=4and n > 4,
0, if i >5and n > 5.

(x.1) Assume that Kg+ ¢;(€) is not nef. Here we note that rank £ > 2 = dim S. Then by a result
of [9, Theorem 1] we see that (S,€) = (P2, Op2(1) © Opz(1)). In this case, ca(S) = 3, ¢1(€)? = 4,
Kgci1(E) = —6, c2(€) =1, $2(€) = 3. So we get the following.

3, ifi=0,
4, ifi=1,
LGL) =03 fi—o
0, ifi=3.

Hence in this case def(X, L) = 1 and codeg(X, L) = 3.

Remark 2.1 Here we note that if (S, &) = (P?, Op2(1) @ Op2(1)), then (X, L) = (Ps(€), H(E)) is
a scroll over PL.

(x.2) Next we consider the case where Kg + ¢1(€) is nef. Then the following holds.

Claim 2.1 ¢/;(X,L) > 0 for every 0 < i < min{4,n}.

Proof. First of all, since £ is ample, we see from [7, Example 12.1.7] and Remark 1.1 that
clo(X,L) = s2(€) > 0. Next we consider the case of ¢ > 1. (Kg + ¢1(€))c1(€) > 0 because
Kgs + c1(€) is nef. Moreover c3(£) > 0 since &€ is ample. Hence cli(X,L) > 0, cl3(X,L) > 0
and clg(X, L) > 0 for n > 4. (Here we note that ¢;(£) = s1(£).) Finally we consider the case of
clo(X, L). We note the following.

(a) If 5(S) > 0, then c3(S) > 0.

(b) If #(S) = —o0 and ¢(S) = 0, then c5(S) > 3.

(c) If K(S) = —oo0 and ¢(S) > 1, then c5(S) > 4(1 — ¢(S)).
Soif K(S) > 0 or #(S) = —oo and ¢(S) = 0, then

cla(X, L) c2(S) +3c1(E) + 2K 5¢1(E)

2 01(5)2 > 0.



If k(S) = —c0 and ¢(S) > 1, then

co(X,L) = ¢(S)+3c1(6)* 4+ 2Ksc1(€)
> c1(€)’ +4g(S, 1 () — a(9)).
Since k(S) = —o0o, we have g(5, ¢1(€)) > q(S) by [3, Theorem 2.1]. Therefore we get cla(X, L) >
Cc1 (6)2 > 0. O

Therefore, in this case, we get def(X, L) = max{0,4 — n} and

codeg(X, L) = { icéi) + (c1(€) + Kg)er (), g Z ; Zv

In general, if X is a projective bundle over a smooth projective variety Y of dimension m with
dim X > 2m and L is the tautological line bundle H(E), then we can calculate def(X, L) and
codeg(X, L).

Proposition 2.4 Let X be an n-dimensional projective bundle Py (£) over a smooth projective
variety Y of dimension m and let H(E) be the tautological line bundle. Assume that n > 2m.
Then def(X, H(E)) =n — 2m and codeg(X, H(E)) = cn(E).

Proof. 1f j —2>2m — 1, that is, j > 2m + 1, then by [5, Theorem 3.1 (3.1.1)] we have

clj(Py(£), H(E)) = (=1)(e;(Py(€), H(E)) — 2ej-1(Py (£), H(E)) + ej—2(Py (£), H(E)))
= (DG =m+Den(Y) =20 —=m)em(Y) + (G —m = Dem(Y))
= 0.

If j = 2m, then by [5, Theorem 3.1 (3.1.1) and (3.1.2)]

clom(Py(€),H(E)) = (=1)*"(eam(Py(E), H(E)) = 2e2m—1(Py (E), H(E)) + exm—a(Py (E), H(E)))
((m4+Den(Y) —2men(Y) + (m— Dep(Y) + em(E))
= ¢n(€) >0.

Hence by Definition 1.2 we have

def(X,H(E)) = min{ i |cl,—i(X,H(E)) #0} =n—2m.
codeg(X,H(E)) = em(E).
This completes the proof. U

Assume that (X, L) is a P 3-bundle over a smooth projective variety ¥ with n > 4 and
dimY = 3. Let £ be an ample vector bundle on Y such that X =2 Py (£) and L = H(E). Then by
[5, Theorem 3.1] cl;(X, L) is the following.



83(8)7 IfZ:O7

383(5)"‘(81(5)-’-}{}/)82(5), lflzl,
383(5) + 12(81(5) + KY)SQ(S)
+(51(8) + Ky)s1(€)* + ca(Y)s1(E), ifi=2,
763(Y) —+ 2623(5) - 201(5)02(6) -+ 401(6)3 o
(X, L) = +3Kyc1(E)* 4+ 2¢a(Y)e1 (E), ifi =3,
303(5) + 12(61(5) + KY)CQ(g)
+(e1(E) + Ky)ei(€)* + ea(Y)er (€), if i = 4,
3c3(E) + (a1 (&) + Ky )ea(E), ifi=>5and n>5,
es3(€), ifi =6 and n > 6,
0, ifi>7andn > 7.

By considering the above results, we can propose the following conjecture.

Conjecture 2.1 Assume that (X, L) is a P""™-bundle over a smooth projective variety Y with
dimY =m. Let £ be an ample vector bundle on' Y such that X 2Py (E) and L = H(E). Assume
that n > 2m. For any integer i with 0 <1i < m we set

Fz(sl(g)a sy Sm(g)) = Cli(X» L)
Then for any integer j with m < j < 2m we have
Clj()(7 L) = Fgm,j(cl((€>7 ey Cm(((:))

In particular
Frn(s1(&),...,8m(E)) = Fn(c1(&),...,cm(E)).

Remark 2.2 This conjecture is true for the case where m =1, 2 and 3.

By looking at the above examples, we see that cl;y1(X,L) = 0 if cl;(X,L) = 0. So we can
propose the following problem.

Problem 2.1 Let (X,L) be a polarized manifold of dimension n and let i be an integer with
0<i<n-—1. Isit true that cl;y1(X,L) =0 if cl;(X,L) =07
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