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Abstract

Let X be a smooth complex projective variety of dimension n and let Li,..., L,—_; be
ample line bundles on X, where ¢ is an integer with 0 < ¢ < n — 1. In the first part,
we defined the ith sectional geometric genus g;(X,L1,...,Ln—;) and the ith sectional H-
arithmetic genus x (X, L1,..., Ln_;) of (X, L1,..., Ln_;). In this third part, we will investi-
gate g2(X,L1,...,Ly,—2) and x5 (X, L1,..., L,—2). Moreover we will give some applications
of the sectional invariants of multi-polarized manifolds.

Introduction.

Let X be a projective variety of dimension n which is defined over the field of complex numbers
and let L be an ample (resp. nef and big) line bundle on X. Then the pair (X, L) is called a
polarized (resp. quasi-polarized) variety. Moreover if X is smooth, then (X, L) is called a polarized
(resp. quasi-polarized) manifold.

This is the continuation of [11] and [12]. The third part consists of Sections 7, 8 and 9. Let X
be a smooth complex projective variety of dimension n and let Lq,..., L,_; be ample line bundles
on X, where 7 is an integer with 0 < ¢ < n — 1. In Section 7 we will give some results and
definitions which will be used in this paper. In Section 8 we will deal with the second sectional
invariants of multi-polarized manifolds (X, Lq,...,L,—2). By using the sectional invariants of
(X,Lq,...,L,—2) we can get some statements for multi-polarized manifolds which are considered to
be a kind of generalization of well-known results in the theory of projective surfaces. In particular,
we will give two problems which are multi-polarized manifolds’ version of Castelnuovo’s theorem
and Bogomolov-Miyaoka-Yau’s theorem, and we will investigate these. In Section 9, we will give
two applications in this paper. In [10] and [13], we gave an application of sectional geometric
genus of multi-polarized manifolds to calculation of the dimension of the global sections of adjoint
bundles. As another application, first, we will calculate the sectional geometric genus of complete
intersections of hypersurfaces in the projective space by using the sectional geometric genus of
multi-polarized manifolds. Next we will give the definition of the ith sectional m-genus of multi-
quasi-polarized manifolds, which is thought to be a generalization of the m-genus of minimal
projective variety of general type. Also we will investigate this invariant, and we can get some
results for 4 = 1 and 2 which are considered to be a generalization of results in the theory of curves
and surfaces. Here we note that we cannot define the ith sectional m-genus of quasi-polarized
manifold easily without the notion of the ith sectional geometric genus of multi-quasi-polarized
manifolds.
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7 Preliminaries for the third part

Definition 7.1 Let X be a projective variety and let L be a line bundle on X. Then L is said to
be k-big if k(L) > dim X — k, where k is an integer with 0 < k < dim X.

Proposition 7.1 (Generalized Hodge Index Theorem) Let X be a projective variety of di-
mension n, let k be a natural number and let L; be a line bundle on X for 0 < i < k. Assume that
n>2and L; isnef fori > 1. Ifny +-+-+np=n—1and ny > 1, then we have

(LoLp L2 - Lp#)? = (L3L{ 32 o L) (L L - L),
Proof.  See [1, Proposition 2.5.1]. O
Proposition 7.2 Let a polarized manifold (X, L) be a quadric fibration over a normal variety Y.
Set n := dim X and m := dimY. Then the intersection number f*(Nyi)--- f*(Np)L"™™ is even

for every line bundles N1,...,Np, on'Y.

Proof. Let p be a positive integer such that pL is very ample. By Bertini’s theorem, there
exists an m-dimensional projective variety T' such that T is an intersection of (n — m) general

members of |[pL|. Then f|r: T — Y is a surjective morphism with deg fr = 2p"~™ and
STND) - (N ) (L) = fH(N1) - [ (Ne) T
= (TN (F(N)) |z
= (flo)" (V1)) - (fl2)" (Nm)
= (deg flr)Ni- Ny,
2pn7mN1 T N’H’L'
Therefore we get the assertion. O

Lemma 7.1 Let X be a complete normal variety, and let D1 and Dy be effective Cartier divisors
on X. Then hO(Dl + D2) Z hO(Dl) + hO(DQ) — 1.

Proof. See [5, Lemma 1.12] or [16, 15.6.2 Lemma]. O

Theorem 7.1 Let X be a smooth projective variety of dimension n > 3, and let Hy, ..., H,_o be
ample Cartier divisors on X. Let B be an ample Q-Cartier divisor on X such that Kx +nB is
nef and (n — 2)-big. Assume that K(X) > 0. Then

co(X)Hy---Hy 2> —(n—1)KxBHy---Hy o — <Z)B2H1 o Hy g,

Proof.  See [8, Theorem 2.1] and [18, Corollary 6.4]. O

Notation 7.1 Let X be a smooth projective variety of dimension n and let i be an integer with
1 <i<n—1.Let Lq,..., L,_; be nef and big line bundles on X. Assume that Bs|L;| = () for every
integer j with 1 < j < n—i. Then by Bertini’s theorem, for every integer j with 1 < j < n—i, there
exists a general member X; € |L;|x,_,| such that X; is a smooth projective variety of dimension
n — j. (Here we set Xo:= X.)



8 The second sectional invariants

8.1 The second sectional geometric genus

Proposition 8.1.1 Let X be a smooth projective variety of dimension n > 3. Let L1,...,Ly_o
be line bundles on X. Then

92(X7L1a s Ln—2)

1
= —1+hY0O ZLQ Ly Lozt Z LiLp | Ly Loy
1<j<k<n—2
1 n—2 1 )
+ZKX ZLJ Ll"'Ln—2+E(CQ(X)—FKX)Ll"'Ln_Q.
j=1

Proof. We use [11, Corollary 2.7] for ¢ = 2. Here we see from the proof of [11, Theorem 2.4]
that the equality in [11, Corollary 2.7] is true for any line bundles Ly, ..., L,_;.
By [11, Corollary 2.7], we can describe g2(X, L1, ..., L,—2) by using the following four terms

n—2
D L) Li Lna, Y LiLi | Li Ly
j=1

1<j<k<n—2

1

> Lj| Ly LyoTi(X) and Ly Ly_oTo(X).

The coefficient of the above four terms are the following.

(Z;L 12L2) Li---Lpy_o <21§j<k§n—2 Lij) Ly Lp_o
(=D°/En!---1) =1/6 D)7/l 1) =1/4

(Si2 ) a s Ta(X) | Ly LuoTo(X)
(—nt/enl--- 1)y =-1/2 (—DZ/l--1) =1

Since Ty (X) = (1/2)e1(X) = —(1/2)Kx and To(X) = (1/12)(ca(X) + ¢1(X)?), we obtain the

assertion. O
Theorem 8.1.1 Let X be a smooth projective variety of dimensionn > 4. Let Ly, ..., L,_o be am-
ple and spanned line bundles on X . If go(X, L1, ..., L,_2) = h*(Ox), then (X, Loqrys - Lon—2))
is one of the following: (Here o is an element of the symmetric group &, _o of {1,...,n —2}.)

(1) (P, Opn(1),...,0pn(1)).

(2) n>5 and (P", Opn(1),...,Opn(1), Opn(2), Opn (2)).

(3) (P™,0pn(1),...,0pn(1), Opn(2)).

(4) (P, 0pn(1),...,0pn(1),Opn(3)).

(5) (@ Ogr(1),...,Ogn(1)).

(6) (Q",Ogr(1),...,0qn(1), Ogn(2)).

IFor the definition of T} (X), see [11, Definition 1.7].



(7) X is a P L-bundle over a smooth curve C and one of the following holds. (Here F denotes
its fiber ).

(7.1) Ly)lr = Opn-1(1) for every integer j with 1 < j <mn —2.
(7.2) Logjy|r = Opn-1(1) for every integer j with 1 < j <n —3 and Ly(,—2)|r = Opn-1(2).

(8) Kx +(n—1)L; = Ox for any j. In particular L; = Ly, for any (j,k) with j # k.

(9) There exist a smooth projective curve W and a surjective morphism f : X — W with con-
nected fibers such that (X, L;) is a quadric fibration over W with respect to f for every integer
twithl <i<n-—2.

(10) There exist a smooth projective surface S and a surjective morphism f : X — S with con-
nected fibers such that f is a P"~2-bundle over S and (X, L;) is a scroll over S with respect
to f for every integer j with 1 < j <mn — 2.

(11) Let (Y, Ay,...,An_2) be a reduction of (X,L1,...,Ly—2). Then n = 4 and (Y, A1, As) =
(P*, Op4(2), Opa(2)).

Proof. Here we use notation in Notation 7.1. Let ((X,—3)’, (Ln—2|x,_5)") be a reduction of
(Xn—3,Ln—2|x,_5). Since

92(Xp—3, Ln—s|x, ) = 92(X, L1,...,Ln_2) = h*(Ox) = h*(Ox, _,),

Kx,_ sy + (Ln-2|x,_;)" is not nef by [5, Corollary 3.5].

Here we note that Kx, _, + Ln—2|x,_, is not nef. (If Kx, _, + Ln_2|x, _, is nef, then Kx,__, +
2L, _s|x,_, is ample. Hence (X,_3, Ln—2|x, _5) = (Xn—3), (Ln—2|x,_5)’). But this is impossible
because K (x, ) + (Ln_2|x,_5)" is not nef.)

Hence Kx 4 L1 + -+ 4 Lo is not nef. By [12, Remark 5.2.4], (X, L,(1),- -, Lg(n—2)) is one
of the types above.

If (X, Loty -+, Lo(n—2)) is one of the above, then we can easily see that

gg(X,Ll, .o .,Ln_g) = h2(OX)

Hence we get the assertion. O

Remark 8.1.1 (1) Theorem 8.1.1 has been also obtained by Lanteri [17, Theorems (3.2) and (3.3)]
(see also [10, Remark 3.1 (3)]).

(2) We can easily check that (X, Lq,Ls) in (11) of Theorem 8.1.1 is a simple blowing up of
(Y, Ay, As).

(3) In [17] Lanteri showed that if (X, Ly,..., L,—2) is the type of (8) in Theorem 8.1.1, then for
any i with 1 <i <n — 2 we see that 2 < L} <6 (resp. 2 < L < 5) if n = 4 (resp. n > 5).

Theorem 8.1.2 Let X be a smooth projective variety of dimension n > 3. Let Ly,...,L,_o be
ample line bundles on X. Assume that k(X) > 0. Then

1
go(X,Ly,...,Lp_) > —1+h'(0x)+ ﬂ(L§ oo L2 )Ly Ly

1 1
+ﬂ (2 + TL> (Ll +--- 4+ Ln72)2L1 . "Ln72~

Proof. By taking a reduction, if necessary, we may assume that Kx + Ly + --- 4+ Ly _o is nef
and (n — 2)-big by [12, Remark 5.2.4] and [12, Theorem 5.2.3] because (X ) > 0. By Theorem 7.1
we get the following lower bound

n

CQ(X)L]_ N 'Ln72 Z —(n - 1)KxBL1 N 'Ln72 — (2

>32L1"'Ln2,

4



where 1
B= H(Ll + o 4 Ly_o).

So by Proposition 8.1.1, we obtain

gQ(Xale .. 'an72)

n—2
1 1
2—1+h1((9x)+6 ML Ly Lozt > LiLy|Li--Lno
j=1 1<j<k<n—2
1 = 1
K L:|Ly--- L, — K%L, --L,_
+4 X ; o 1 2+12 x4 2
2 2 2
n—1 - n—1 —
_ KxLy---L,_ L. | — Ly L, I»
12n ? Z g 24n ! ? Z ?
Jj=1 Jj=1
1
:_1+h1(OX)+EKX(KX+L1+"'+Ln—2)L1"'Ln—2
1 1
+—= 1+ ) Kx(L1 4+ Ly2)L1---Ln_»
12 n

1 1
T (2 * n> (Li+-++ Ly—2)Li-- Ly

1
+ﬂ(L§ o+ L2 )Ly Ly

1 1
> -1+ 11 (Ox) + 2 (2+ n) (Ly+ -+ Ly2)’Ly -+ Ly

1
+ﬁ(L% +---+ L%,Q)Ll T Ln72~

So we get the assertion. O

8.2 The second sectional H-arithmetic genus

Let n be an integer with n > 3. Let (X, L1, ..., L,_2) be an n-dimensional multi-polarized manifold
of type (n—2). Here we are going to propose some conjectures which are induced by some results in
the surface theory. Here we note the following: let (X, Ly, ..., L,_2) be a multi-polarized manifold
of type (n — 2) with dim X = n. Assume that Bs|L;| = 0 for every integer j with 1 < j <n — 2,
and (X, L1,...,Ly—_2) is not the type (10) in [12, Remark 5.2.4]. Then by the same argument as
in the proof of [9, Proposition 2.1], we can prove the following: (Here we use Notation 7.1.)

(a) K(Kx + L1+ -4 Lp_2) > 2 if and only if k(X,_2) = 2.

(

1 if and only if k(X,,_2) = 1.

)

b) K(Kx + L1+ +Ly_o) =
) =0 if and only if kK(X,_2) = 0.
) f—

)
)
(c) K(Kx + L1+ 4 Ln_s
(d) K(Kx 4 L1+ -+ Ly_2) = —o0 if and only if (X, ) = —oc.

By the same consideration as in [6] and [9], we can give the following correspondences: let S
be a smooth projective surface. Then the following correspondences are considered.



Invariants of S. <& Invariants of (X, Ly,..., Ly_2).
hQ(OS) < gg(X,Lh...,Ln_Q)
hl(OS) = hl(OX)
X(OS) =4 Xg(X,Ll,...,Ln_Q)
K% A (Kx+Li++Lp2)?L1-Lyp_s
k(S) =k & K(Kx+Li+--+Lho)=k
H(S):Q SFF K(Kx+L1++Ln,2)Z2
(In (%), k = —00,0, or 1. In (x) and (**), the direction = needs the assumption that

(X,Lq,...,Ly_2) is not the type (10) in [12, Remark 5.2.4].)
By using these correspondences, we can propose many problems. Before we propose conjectures,
we state the following some fundamental results in the surface theory.

(A) x(Og) > 0if k(S) =2.

By using the above correspondences, we can propose the following conjecture.

Conjecture 8.2.1 Let (X, L1,...,Ly,—2) be an n-dimensional multi-polarized manifold of type
(n—2). Then

(1) XQH(X,Ll,...,Ln,Q) >0 if/i(KX+L1+"'+Ln,2) > 2.
(2) X?(Xleaan72) 20 ZfOSK(KX+L1++Ln72) S]-

(3) XQH(X,Ll,...,Ln,Q) =1 —q(X) ZfH(KX +L1 + - +Ln,2) = —o0 and (X,Ll,...,Ln,Q)
is not the type (10) in [12, Remark 5.2.4].

(4) 8X£I(X7 L17 LR 7Ln72) Z (KX +L1+ . '+Ln72)2L1 e Ln72 ZfK;(KX +L1+ . '+Ln72) = —
and (X, Lq,...,L,_2) is neither (P™,Opn(1),...,0pn (1)) nor the type (10) in [12, Remark
5.2.4].

(5) IE(X,L1,...,Lp2) > (Kx+Li+ 4+ Ly2)*Ly+ Ly if s(Kx +Li+++++Ly_2) > 0.

If n = 3, then this conjecture is equivalent to [9, Conjecture 2.1]. So in this paper we consider
the case where n > 4. First we will study (2) in Conjecture 8.2.1.

Theorem 8.2.1 Let n be an integer with n > 4. Let (X,Ly,...,L,_2) be an n-dimensional
multi-polarized manifold of type n — 2. Assume that k(Kx + L1 + -+ + Lp—2) = 0 or 1. Then
Xgl(Xv Lla e L7l—2) > 0.

Proof. By taking a reduction of (X, Ly, -+, L,_2) if necessary, we may assume that the multi-
polarized manifold (X, Lj,---,L,_2) is a reduction of itself (see [11, Proposition 2.3]). Then
Kx +Li+ -+ L,_5 is nef but not ample. Let ® : X — W be the nef value morphism of
(X,L1+---+Ly_2). Then dimW =0 (resp. dimW = 1) if K(Kx + L1 + -+ + Lyp—2) = 0 (resp.

1).

If dimW = 0, then Kx + Ly + -+ L, 5 = Ox. Hence h(Kx + L1 + -+ + L, 2) = 1
and h!'(Ox) = 0. Therefore by [11, Example 2.1 (G)] we have g2(X, L1,...,L,—2) = 1 and
Xg(X,Ll,...,Ln,Q) =2.



If dimW =1, then (X, Ly, -, L,_2) is a Del Pezzo fibration over a smooth curve W. In this
case Kx + L1+ -+ L,_o = ®*(H) for an ample line bundle H on W. Then

@2(X, L1, Ly—2) = h(Kx+Li+-+ Ly o)
h°(H)
hY(H) 41— g(W) + deg(H).

Since deg(H) > 2g(W) — 2 by [5, Lemma 1.13 (2)], we have

92(X,La, - Lnz) = h'(H)+1—g(W)+deg(H)
> RYH)+1—g(W)+29(W) -2
Y (H) + g(W) — 1.

Therefore, since g(W) = h'(Ox),

Xg(XrLla"WLTL*Q)
=1- hl(OX) +g2(X7L17"'3Ln*2)
> h'(H) > 0.

This completes the proof. O

Next we consider (1) in Conjecture 8.2.1 for x(X) > 0.

Theorem 8.2.2 Let (X, L1,...,L,_2) be an n-dimensional multi-polarized manifold of type n—2.
Assume that n > 4 and k(X) > 0. Then

1
Xg[(X7L17"'7Ln—2) > Z( % +Ln Q)Ll "Ln—Q

1
jl ( ) Li+- -+ Ly 2)?Ly- Ly o

\%
o

Proof. Since
Xf(Xa Lla B Lnf2) =1- hl(OX) + 92(X7L17 s 7Ln72)>
we get the assertion by Theorem 8.1.2. O

Next we consider (3) and (4) in Conjecture 8.2.1.

Theorem 8.2.3 Let n be an integer withn > 4. Let (X, Lq,...,L,—2) be an n-dimensional multi-

polarized manifold of type n—2. Assume that K(Kx + L1+ 4 Lp_2) = —00. Then the following
hold.

(1) x2(X,Ly,...,Lp9) =1 —q(X) if (X,L1,...,L,_2) is not the type (10) in [12, Remark
5.2.4].

(2) 8X§I(X, Ll, S Ln_g) > (KX + Ll + -+ Ln_2)2L1 ce Ln—2 Zf (X, Ll, I Ln_g) is meither
(P, Opn (1), ...,0pn (1)) nor the type (10) in [12, Remark 5.2.4].

(3) If (X, L1,...,Lyp_2) = (P, Opn(1),...,0p (1)), then

IS (X,L1,...,Ly—2) = (Kx + L+ +Ly_2)?Ly -+ L,_o = 9.



Proof.  Assume that k(Kx+Li+---+L,_2) = —occ and (X, L1, ..., L,_2) is not the type (10)
in [12, Remark 5.2.4]. Then Kx+Lq+---+L,_2 isnot nef, and (X, Ly, ..., L,_2) is one of the types
in [12, Remark 5.2.4] other than the type (10) in [12, Remark 5.2.4]. Here, by using [11, Corollary
2.3], we calculate g2 (X, L1, -+, Ly_2), X3 (X, L1, -+, Ly, o) and (Kx+L1+-++Ly_2)?Ly -+ Ly,_o.

(a) If (X7L17"'7LTL—3’L7L—2) = (PH,OIPM(I),"',O[Pn(l),@[pm(3)), then 92(X7L17"'7Ln—2) = Oa
(KX+L1+~~-+Ln_2)2L1~~Ln_2:3and Xg(X,Ll,"',Ln_Q):li17q(X).

(b) If (X, Ly, -+, Ly—4, Lyp_3, Ln_2) = (P", Opn (1), -, Opn (1), Opn (2), Opn (2)), then we see that
92(X, L1, ,Ly_2) =0, (Kx+Li++Lp2)?Ly-Lyp_o=4and x4 (X, Ly, -, Lp_2) = 1=
1—q(X).

(C) If (XaLl,"'aLn73aLn72) = (]Pn,O]pn(].),"',O]Pm(l),O[pn(Q)), then gQ(X,le"',Ln72) - 07
(KX+L1+"'+Ln72)2L1"'Ln72:8and XgI(XaLlawLan):]-:]-_q(X)

(d) If(X,Ll,-”,Ln_Q) = (P”,Opn(l),---,(’)Pn(l)),thengg(X,Ll,-~- L _ ) (Kx+L1+ —|-
Ln_g)QLl . 'Ln_Q =9 and Xéq(X,Ll,' s ,Ln_g) =1=1- q(X) Hence 9X2 ( L . Ln_g)
(Kx+ L1+ + Ly 2)>Ly++-Ly_o.

(e) If (X,L1,~ . ,Lnfg,Ln,Q) = (Qn,OQn(1>7 . ,OQw(l),OQn(Q)), then gg(X,Lh' . 7Ln72) = O7
(KX—I—L1+~-~+Ln_2)2L1~--Ln_2:4and Xé—l(X,Ll,,Ln_Q):l:l—q(X)

OQ”(l)""’OQ (1))7 then gZ(XaLla"'aLn*Q) = 07 (KX + Ll +

(£) If (X, Ly, -+, L @
8 and X2 (X7L17 7Ln72):1:1_q(X)

v+ Lp_2)?Ly - Ly,

)
—2

(g) Let (X, Ly,...,Ly—2) be the type (9) in [12, Remark 5.2.4]. Let f : X — W be its morphism.
Then Kx + L1+ -+ Lpo+ L; = f*(A;) and Kx + L1 + -+ L,—o + L; = f*(4;) for any
¢ and j with ¢ # j, where Ay € Pic(W) for any k. Therefore L, — L; = f*(A; — A;), that is,
Li = Lj+f* (AZ—AJ) Then Kx+L1+ . '+Ln,2 = Kx+(n—2)L1+f* (A2+ . -—|—An,2—(n—3)A1).
We may assume that deg(A;) > deg Ay for any i. Here we set A:= Ao +---+ A,,_o — (n — 3)A;.
Then deg A > 0. Here we note that (X, L;) is a quadric fibration over W. Let & := fi(L1). Then
&1 is a locally free sheaf of rank n + 1 and X € |2H (&) + p*(B)| for some B € Pic(W), where
p:Pw(&) = W,and Kx = —(n— 1)Ly + f*(Kw +c1(€1) + B). We set a := deg A, a; := deg A;,
b:= deg B and e := deg ¢y (7). Here we note that a = Z;:; a; — (n—3)ay and LY =2e+b > 0.
Then

(Kx +Li+-+Ly2)’Li-- Ly

= (L1 + (2g(W)=2+e+a+b)F)?Li(Ly + (ag —a1)F) -+ (L1 + (an_o — a1)F)
=L"—22g(W)—2+e+a+b Ly 'F+(ag+-+an2— (n—3)a) L} 'F
=8—8g(W) — 2e — 2a — 3b.

Claim 8.2.1 2e+ 3b > 0.

Proof. 1fb > 0, then 2e+3b = (2e+b)+2b > 0. So we assume that b < 0. Since 2e+(n+1)b > 0
by [2, (3.3)] and n > 4, we see that 2e + 3b > —(n — 2)b > 0. Therefore we get the assertion. [

Since go(X, L1,y Ln_2) = 0 and x¥ (X, Ly, -+, Ly,_2) = 1 — g(W) by [11, Example 2.1 ()],
we get

(Kx+Li+- - +Lp_2)?Ly -+ Ly_ = 8—8g(W)—2e—2a—3b < 8(1—g(W)) = 8x4 (X, L1, ..., Ln_s)

because a > 0 and 2e 4+ 3b > 0.
(h) Assume that Kx + (n—1)L; = Ox for every ¢ with 1 <¢ <n—2and L; = L, for i # j. Then



by [11, Example 2.1 (G)], we have go(X, Ly,--+, L, _2) = 0 and x& (X, Ly, -+, L,_3) = 1. Here
we note that by [4, (8.11) Theorem| L} < 8 for every ¢ because (X, L;) is a Del Pezzo manifold for
every ¢. Then

(Kx+Li+- 4Ly )Ly Ly o= (Kx+(n—2)L;)>L} 2 = L' <8 =8x(X,L1,...,L,_2).

(i) Let (X, Ly,..., Ly—_2) be the type (7.1) in [12, Remark 5.2.4]. Then by [11, Example 2.1 (H)],
we have go(X,L1,-+,L,_2) = 0 and X3 (X, Ly, -+, L, o) =1 —g(W). Let ® : X — W be a
P"~Lbundle over W such that L;|r = Opn-1(1) for every i. Then we may assume that there exists
an ample vector bundle £ on W such that L; = H(E) and there exists B; € Pic(W) such that
L; = Ly + ®*(By) for every j with 2 < j <n —2. We set b; := deg B; and e := ¢;1(£). Then

(Kx +Li+ -+ Ly 2)?Ly---Lp_o
2

|
N

n

=|—-2H() + o* KWJrcl(E)JrnZBj HE) || (H(E)+ 2" (By))
j= 2

.
Il

n—2
"4 Zb —4 | 29( )—2+e+22bj
iz

=8(1—g(W))
=8xH(X,Ly,...,Ly_3).

(j) Let ® : X — W be a P l-bundle over a smooth curve W such that L;|p = Opn-1(1) for
every i with 1 < i <m-—3and L, 2|p & Opn-1(2). Then (X,Kx +Li+ -+ Lp_3+ 2L, _2)
is a scroll over W. We set £ := &, (Kx + Ly + -+ Lp—3 +2L,_2). Then £ is a locally free
sheaf of rank n on W such that X = Py () and Kx + L1+ -+ L3+ 2L,—2 = H(E). On
the other hand, we can express L; as L; = H(E) + ®*(4;) and L,,_o = 2H(E) + ®*(B), where
A;, B € Pic(W). We set a; := deg A; for every integer ¢ with 1 <4 <n —3 and b := deg B. We
calculate (Kx + Ly + -+ Ly_2)?Ly -+ Ly_s.

(KX + Ll + -+ Ln—2)2L1 T Ln—2

= (—H(&) + ®*(Kw +c1(§) + Av + -+ Ay 3+ B))?

X(H(E) + @"(A1)) - (H(E) + " (An—3))(2H(E) + ©*(B))

=2e —4(2g(W) — 2) — 4e — <Z az> —4b+2 (Z al>
=—2e+8(1—g(W))—2 (Z ai> — 3b.

On the other hand
0 < (Ly---Lnp3)L3_,
= (H(E)+ " (A1) - (H(E) + 9" (An_3))(2H(E) + *(B))?

n—3
8 (Z ) + 8¢ + 12b.
i=1

Hence 2(2?;13 a;) +2e +3b > 0. Since (X, L1,...,Lp—3,Ln_3,L,_2) is a quadric fibration over
W, by [11, Example 2.1 (I)], we have

gQ(XaLla"'aLn72) =0



and
X;I(X7L17"'7Ln—2>: 7g(W)

Therefore we obtain

8X§I(X7 L17 .. '7Ln72) - (KX + Ll + -+ Ln72)2L1 o 'Ln72

n—3

i=1
> 0.

By above we get the assertion of Theorem 8.2.3. O

Next we consider the case where (X, Ly,...,L,_2) is the type (10) in [12, Remark 5.2.4].
Namely, assume that there exist a smooth projective surface .S and a surjective morphism 7 : X —
S with connected fibers such that 7 is a P"~2-bundle over S and (X, L;) is a scroll over S with
respect to f for every integer j with 1 < 7 < n — 2. For every integer ¢ with 0 < i < n — 2, let ¢;
be a non-negative integer with ¢; + --- +¢,_o = n — 2. Then we set

Flt1, .ty o) i= (Kx +t1Ly + -+ ty_oLy_o)? L - LI"2

and
n—2

Ap =1 (a1,...,an2) |0<a; €2, Z%‘:n—Q
j=1

Lemma 8.2.1 Leti and j be two distinct natural numbers such that 1 <i,5 <n—2 and L; # L;.
Then for every (a1, ...,an—2), (b1,...,bn—2), (€1,...,cn_2) € Ap_o with

bi=a; — 1, ci=a; +1,
bjzaj—i—l, cj:aj—l,
bk:akh ka#zhj Cp = Ak, ka#/l’h])

we can prove that either f(ai,...,an—2) < f(b1,...,bn—2) or f(a1,...,an—2) < f(c1,...,¢Cn—2)
holds.

Proof. Here we may assume that i = 1 and j = 2 without loss of generality and then we also
assume that Ly # Lo. By assumption, we see that (X, L;) is a scroll over S. Hence there exists an
ample vector bundle £ on S of rank n — 1 such that X = Pg(€) and Ly = H(E). Then for every
integer p with 2 < p <n — 2, we get

Ly = H(E) + 7 (T)p),
where T, € Pic(S). Here we note that
Kx=—-(n—1H(E) + 7" (Ks + c1(£)).
So we have
(1) fla,...,an—2) = (Kx+arLi+ - +ap—2Lly_o)?L{" - - Lo
= (—HE)+ " (Ks+ci(€) +axTa+ - + an—2Ty—2))*
XH(E)" (H(E) + 7" (1)) - (H(E) + 7" (T —2)) "
= HE"—(2Ks+2c1(E)+asTo+ -+ ap—2T,—2)c1(E)
+(Ks+ (&) +asTa+ -+ + an—oTy_2)*
—2(Ks+ci(&)+aTo+ -+ an—-oTn_2)(a2To+ -+ an_2Ty_2)

+ Z aiajTiTj —+ Z <G;)T12

—2
2<i<j i=2

10



Here we set by = a1 — 1, b = as + 1 and by = ap (k # 1,2). Then by (1) we have

f(by,. . bp_2)
=H(E)" — (2Ks+2c1(E) + (aa + 1)Ts +asTs + - - + an—2Ty—2)c1(E)
+(Ks +c1(E) + (ag + DTy + asTs + - - -+ an_oT,_2)?
—2(Ks+c1(E)+ (ae+D)Ta+asTs+ -+ an—oTh—2)((a2+ 1)Ta +azT5+ -+ an—2Tp_2)

n—2 n—2
as +1 2 a; 2
+(a2 + 1) jzg . a; TQY}' + 3<Ei<j aiajTiTj + ( 9 )T2 =+ izg . (2)Tz .

Here we note that

(2Ks+2c1(E) + (ae+ D)Ta +asTs + - -+ an—2T—2)c1(€)
= (QKS =+ 261 (8) =+ a2T2 + -4 an,ng,g)Cl(é‘) -+ TQCl(E),

(Ks + C1(5) + (ag+1)Ty +asT5+ -+ + an,QTn,Q)Q
= (Ks+c1(E) +aTo + -+ an—oT,—2)?
+2(Ks +c1(E) +asTo + -+ an_oTy_2)To + T5,

and
Q(KS —+ C1 (5) —+ (ag —+ 1)T2 —+ a3T3 —+ -4 an,ng,Q)((aQ —+ 1)T2 —+ ang + -4 an,ng,g)
=2Ks+ci(E)+adTo+ -+ anoTh_2)(aTo+ -+ an—2T,_2)
+2(K5’ + (5) + QCLQTQ + -+ 2an_2Tn_2)T2 + 2T22
Therefore
(2) f(a17"'7an—2)7f(b17"'7bn—2)
n—2
S TQCl (5) + 2(&2T2 + -+ an,QTn,Q)TQ - Z ajTgTj — a2T22 + T22
j=3
= T2(31 (5) + (CL2 + 1)T22 + (a3T3 + -+ an_QTn_Q)TQ
= (L~ L)L L L L205
In order to prove Lemma 8.2.1, we assume that both f(a1,...,an,—2) > f(b1,...,bp—2) and

flay,...;an—2) > f(c1,...,cn—2) hold. Then by (2) we have

ay rax+2ras An—2 a1+1raz+1gras An—2
L' Ly L3 "'Ln—z > L Ly L3 "'Ln 2

and
a1+27raz ras Apn—2 a1+1razx+1lyras Qp—2
Ll L2 LS ”'Ln—2 ZLl L2 L3 "'Ln—2 '

Hence by [1, Proposition 2.5.1 and Corollary 2.5.4], we see that L1 = Lo. But this contradicts the
assumption that L, # Ls. Therefore we get the assertion of Lemma 8.2.1. O

Theorem 8.2.4 Let (X, L1,...,L,_2) be the type (10) in [12, Remark 5.2.4]. Then there exists
an integer i such that

(KX +Li4+---+ Lnfz)le oLy o < (KX + (TL - 2)LZ)2L772

Proof. Let (a1,...,an—2) € An—_3. Then we will prove the following.

11



Claim 8.2.2 Ifa; and a; satisfy a; > 1 and a; > 1 for some i and j, then either f(ai1,...,an—2) <
f(b1, ..., bn—2) or fla1,...,an—2) < f(c1,...,Cn—2) holds, where

b; =0, ¢ = a; + ay,
bj:al-—i—aj, CjZO,
bk:ak, ka‘;éuj, Cr = ag, ka;él,]

Proof. IfL; = Lj, then f(ai,...,an—2) = f(b1,...,bp—2) and f(a1,...,an—2) = f(c1,...,Cn—2)
hold. So we may assume that L; # L;. Then we apply Lemma 8.2.1, and we see that one of the
following holds.

(A) f(a1,. . an—s) < f(ars ) an_s).
(B) f(a1,...,an—2) < f(B1,-..,Bn-2)-

Here
Oéi:ai—l, ﬁi:ai+17
ajzaj—|—1, ﬂj:aj—l,
ap = Ak, lfk#l,], ﬁk:ak’a lfk?é’l,,j

Assume that the case (A) holds. If a; = 0, then this is done. So we may assume that o; > 1.
Then a; > 1 and Lemma 8.2.1 implies that one of the following holds.

(A/) f(ala .. ~7an72) < f(’)/la o 7'77172)-
(B) floa,...,an—2) < f(61,...,6n—2).

Here
vi =a; — 1, 0 = oy + 1,
'Yj:aj+17 (Sj:Oéj—l,
Tk = Ok, lfk#%]a 5/(::&1@7 lfk;é@,]
But since (61,...,0n,-2) = (a1,...,a,—2), the case (B’) cannot occur because f(ai,...,an_2) <

f(d1,...,0p—2) from (A) and (B’). By repeating this process, we find that f(ai,...,an—2) <
f(bl, ey bn_g) holds.

If we assume that the case (B) holds, then by the same argument as above f(a1,...,an_2) <
f(er, ..., cn_2) holds. So we get the assertion of Claim 8.2.2. O

We go back to the proof of Theorem 8.2.4. By using Claim 8.2.2 repeatedly, there exist (di,...,d,—2) €
A, _5 and an integer ¢ such that d; = n—2 and d; = 0 for every j with j # i and f(a1,...,a,-2) <
f(dy,...,dn—2). Therefore we get the assertion of Theorem 8.2.4. O

Theorem 8.2.5 Let (X, L1,...,Ly_2) be the type (10) in [12, Remark 5.2.4]. Then the following
inequality holds.

S8X£I(XaL17---7Ln—2) ZfH(S) 752,

... 2 ...
(Kx + L1+ + Ln—2)"L1--Lns {< 9X§(X,L1,...,Ln_2) if K(S) = 2.

Proof. By Theorem 8.2.4, there exists an integer ¢ such that
(KX + L1 R Ln72)2L1 T Ln72 < (KX + (n - 2>L7§)2L?72‘
On the other hand, by [9, Theorem 3.1.1 (4)], we have

<8J(X,L;) i r(S) £2,

(Kx + (n—2)L;)* L} ? {< IXE (X, Li) if K(S) = 2.

12



Here we note that h'(Ox) = h'(Os), g2(X, L;) = h?(Ox) = h*(Og) and go(X, L1, ..., Ly _2) =
h?(Ox) = h?(Og) by [11, Example 2.1 (H)]. Hence x4 (X, L;) = 1—-h}(Ox)+g2(X, L;) = x(Os) =
1—h'(Ox)+go(X,Li,...,Ln_2) = X3 (X,Ly,...,L,_2), and we get the assertion of Theorem
8.2.5. O

Finally we are going to investigate (5) in Conjecture 8.2.1.

Theorem 8.2.6 Let (X, L1,...,L,_2) be an n-dimensional multi-polarized manifold of type n — 2
with n > 4. Assume that k(X) > 0. Then

12X (X, Ly, ... Ly_o) > (Kx + L1+ 4 Lp_2)*Li---Ly_o.

Proof. By taking a reduction of (X, Ly, ..., L,_2), we may assume that Kx +Li+- -+ Ly,_o
is nef and (n — 2)-big by [12, Remark 5.2.4] because x(X) > 0. Hence by using Theorem 7.1
(setting B := (L1 + - -+ + L,—2)/n), we see that

Xg(XaLla .. 'aLn—Q)
=1-h"(Ox)+g2(X,L1,...,Lyp_2)

n—2

1 1

=5 §L3 Ll...Lnﬁ_,_Z E LiLy | Ly Lys
j=1

1<j<k<n—2
1 2 1
2
4 Kx ;Lj Ly Loz + 75 (e2(X) + KX) Ly Lo
(&2, 1
| L [ L Lt g | XD LiLe | Lio Los
j=1 1<j<k<n—2
1 2 1
K L:|Li- Ly o+ —K%*Ly---L,_
+4 X ; j 1 2+12 x L1 2
2
n—1 n—2 n—1 n—2
- K L:|Ly- L, Ly L,
12n X ; i 27 o4 JZ:: J ! 2
1 2
= E(KX +Li+ -+ Ly 2)Ly--Lp_o
2
1 1 n—2
— Kx(Li++ 4Ly o)Ly Ly g+ — Ly L,
+12n x (L1 + + 2) L1 2+24n Z g 1 2

n—2
1 2
top [ 2oL5 | Lo Lo
j=1

1
> E(KX +Li+ 4 Ly2)?Ly -+ Ly_o.

Here we note that Kx (L1 +-+++ Ly_2)L1 -+ L,—o > 0 because k(X)) > 0. So we get the assertion.
O

9 Applications

In this section, we will provide two applications.
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9.1 The sectional geometric genus of complete intersections of hyper-
surfaces in PV

By using the notion of the sectional geometric genus of multi-polarized manifolds, we calculate the
sectional geometric genus of (X, L), where X is a complete intersection of hypersurfaces in P and
L:=0pn(1)|x.

Theorem 9.1.1 Let X be a projective variety such that X is a complete intersection of hypersur-
faces Dj of PN with D; € |Opn(d;)| for any j with 1 < j < r. Letn := dimX = N —r and
L := Opn(1)|x. Then for every integer i with0<i<n—-1=N—-r—1

9i(X, L) = Z(—l)r‘“ Z (dlpl + .;a'jidrpr - 1).

u=1 (P1sesPr)ES (M)
Here
S(T)u = {(plv' t 7p'r‘) ‘ Pm € Z, 0 S Pm S 1a ﬁ{m | Pm = 1} = U} .

Proof. Here we note that X and D; are not smooth in general. First we will prove the
following:
Claim 9.1.1 g;(X,L) = ¢;(PN,Dy,...,D,, H,...,H), where H := Opn(1).
\W_/
N—i—r
Proof. By the Bertini theorem we can take a general member D’ € |Op~ (d;)| for any j such
that the following holds: X}, := D N...N Dj is a smooth projective variety of dimension N — k

for every k with 1 <k <r. Set X' :=D{n...ND..
Then by using [11, Theorem 2.3] we have

gi(X/,H|X/) = gi(PN, i,...,D;,H,...,H).
Let Ny pv (vesp. Nx/pn) be the normal bundle to X’ (resp. X) in PY. Then c(Nx//pn) =
HZ:l(l + diH|x/) and C(NX/]pN) = H;:l(l + dkH‘X) Since
o(Tx:) =1+ H|x)" T T+ deHx0)
k=1
(see [14, Example 3.2.12]), by [7, Theorem 2.1] we get

—1

3

9:(X' H|x/) = a(H|x)N "+ (-1)"" (X(OX') - (—1)"_kh”_k((’)x')> ,

o
Il

0

where a € Q. On the other hand since

o(Tx) = (1+ HIx)V/ T] (1 + diH]x),
k=1

by [7, Theorem 2.1] we have

9i(X, Hx) = a(H|x)" "+ (=1)™ (X(OX) - _/(—1)"%”’“(0)()) :
k=0

14



Here we note that h°(Ox) = h°(Ox/) =1 and W/ (Ox) = h/(Ox:) = 0 for every j with 0 < j <n
(see also [15, Chapter I, Section 3, Theorem 3.4 (a) and Chapter III, Section 5, Exercise 5.5 (¢)]).
Since

X(Ox) =D (=1 hH(Oxr) = )" ER R (Ox), (H|x)N T = (Hx)N
k=0 k:0
and Dy, is linearly equivalent to D), we see that
gi(X,L) = gz(X Hlx)
= gi(X', H|x)
= gl(IP’N Dy, ...,D. H,..  H)
(PN, Dy,...,D., H,... ,H).
This completes the proof of Claim 9.1.1. O
Next by using [11, Corollary 2.3], we calculate g;(PN, Dy,...,D,, H,..., H). Here we note that
———
N—i—r
N—i o _
DNTTIRN T (Opr) = 0
j=0

for any ¢ > 1. First we consider the case where N —i—r =1. Theni= N —r—-1=mn—1 and by
[11, Corollary 2.3] we have

gnfl(PNaDla"'aDTaH)
r+1
—Z 1)t > h?(Kpx +p1Dy + -+ + pe Dy + qH)
(P1se-Pr @) ES(r+1)n
r4+1
— d1p1++d7p7+q_1
o C D DI
N
u=1 (P1sesPr @) ES(r+1)y
r+1
_ dip1 +---+d.pr
Sl %
N
u=1 (ph,..,pT)ES(T)u,l
a — d1p1+"'+drpr_1
DIC D D
N
u=1 (P1,+-sPr) ES(T)u
- dipy + -+ dypy
SDVEIEED>
N
u=0 (plvnvpr)es(r)u
. dip1 +---+drpr — 1
DNC >
N
u=1 (P1505pr) ES(T)u

>

(P15e-,pr)ES(T)u

= Z(,

(Here we note that if u = 0, then (=1)" 3, 1cg(mo (et

gnfl(PNaDla"'aDTaH>

dipy+ -+ dpp,\  (dapr+ -
N

+ drpr -
N

)i

=0.) Hence
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< —w dip1 + -+ dvpy dipr+ - +depr — 1
=1 VYES(T)u

Z
2

u I dipy + -+ dppr — 1
=31
N-1
u=1 (P1se- D) ES(T)u
J d et depr —1
r4+mn-—
u=1 (p1y-spr)ES(T)
Next we consider the case where N —4 —r > 2 and we calculate g;(PY,Dy,...,D,, H,..., H).
N—_——
N—i—r
Here we note that by [11, Theorem 2.3]
gi(PN.Dy,...,D. H,... H)
————
N—i—r
= g’L (]PT+Z+1, OP7‘+71+1 dl), ceey OP7‘+71+1 (dr), O]}Dr-%—tﬁ—l (1)).
On the other hand, by above
(P Oprriia (d Opr+i+1(dy), Opr+it1(1
gl( ’ ]P’”"*’Jrl( 1)7"'5 IP”"*HFI( T‘)a IF”"+I+1( ))
. ) d st depr —1
:Z(_l)v—u Z ( 1p1+ +‘ D )
r+1
u=1 (P15 Pr)ES(T)w
Hence
gi(PN.Dy,...,D, H,... H)
- r—u d1p1+"‘+drpr_]-
SN DI (A
u=1 (P15 sPr)ES(T)
So we get the assertion. O

9.2 The sectional m-genus of multi-polarized manifolds

Here we define the ith sectional m-genus of multi-quasi-polarized manifolds.

Definition 9.2.1 Let m be an integer with m > 2. Let (X, Ly, -+, L,_;) be an n-dimensional
multi-quasi-polarized manifold of type n — i, where ¢ is an integer with 0 <i <n — 1. Let F be a
coherent sheaf on X.

(1) Assume that Kx + L; + --+ + Ly,—; is nef and (n — )-big. Then the ith sectional m-genus
pi (X,Ly1, -+, Ly_;; F) is defined by the following:

p;in(XaLlf" 7Ln—i;F)

gi-1(X,(m —1)(Kx + L1+ -+ Lni), L1,..., Ly—i; F)
= 14X, Ly, Ly F)— RN F) if1<i<n-—1,
go(X,Ly,...,Lp; F) ifi=0.

(2) If F = Ox, then we set p¢ (X, Ly, -+, Ly_;) :=p. (X, L1, -+, L,_i; Ox).
B)IfF=0Oxand L =1L, =--+= L,_;, then we set p{ (X,L) :=p (X,L,...,L;Ox).

Theorem 9.2.1 Let m, n, and i be integers with m > 2, n > 2 and 1 < i < n—1. Let
(X,Lq,...,L,_;) be an n-dimensional multi-quasi-polarized manifold of type (n —1i). Assume that
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n>2 Kx+ L+ 4 L, is nef and (n — i)-big and |L;| is base point free for every j with
1 <j<n—1i. Here we use notation in Notation 7.1. Then

Pon(X, Ly, ..., Ly—;) = h®(mKx,_,).
Proof. By definition and the proof of [11, Theorem 2.3] we get

pt (X, L1,...,Ln_y)

=gi1(X,m—-1)(Kx+L1+-+Ln),L1,...,Ln_)
+9i(X,Ly,...,Ly_s) — 71 Ox)

=¢gi-1(Xn—iy(m—-—1)Kx,_,)+ hi((’)xnf,i) — hi_l((’)xnfi).

Since Kx + L1 + -+ + L,—; is nef and (n — i)-big, we see that Kx, , is nef and big because
(Kx+Li+-++Ly )Ly L,_; >0 by [1, Lemma 2.5.8]. Hence by [5, Theorem 2.3] we have

gifl(Xn*h (m - l)Kani) = hO(Kani + (m - ]‘)KXn—i) - hi(Oani) + hi_l(oxnﬂ')
= ho(mKanz‘) - hz(oxnﬂ> + hi_l(Oani)'
Therefore we get the assertion. O
Theorem 9.2.2 Let m be an integer with m > 2. Let (X,L1,...,L,—1) be an n-dimensional

multi-quasi-polarized manifold of type (n — 1). Assume that n > 2 and Kx + Ly + -+ Lp_1 is
nef and (n — 1)-big. Then
pr (X, L1,y Lyq) >2m — 1.

Proof. By definition we get

p:n(XaLlw"aLn—l) = gO(X’(mi1)(KX+L1+"'+Ln—1>7L17"'7L7L—1)
+91(X, L1,...,Ly_1) — h°(Ox)
2m — 1

= 5 (Kx+Li+-+Ly1)Ly--- Ly

On the other hand, since Kx + Ly + -+ + L, is nef and (n — 1)-big, we see that (Kx + L1 +
<o+ Lp_1)Ly-+-Lp_1 >0 by [1, Lemma 2.5.8]. Moreover (Kx + Ly + -+ Lyp_1)L1-+-Ly_1 is
even. Hence we get the assertion. O

Remark 9.2.1 If dim X =1, m > 2 and Kx is nef and big, then by the Riemann-Roch theorem
RO (mKx) = (2m — 1)(h*(Ox) — 1).

Since Kx is nef and big, we have h'(Ox) > 2. Hence we get h°(mKx) > 2m — 1. So Theorem
9.2.2 can be regarded as a generalization of this result.

Theorem 9.2.3 Let (X, L) be a polarized manifold of dimension n > 3, and let m be an integer
with m > 2. Assume that Kx + (n—1)L is nef and (n—1)-big. If p. (X, L) =2m—1, then (X, L)
is one of the following types.

(1) Kx 4+ (n—3)L =0Ox.

(2) X is a double covering of P™ with branch locus being a smooth hypersurface of degree 6 and
L is the pull-back of Opn (1).

(3) (X, L) is a simple blowing up of the type (2) above. In this case n = 3.
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(4) (X, L) is a scroll over a smooth surface, and one of the types in [3, (3.4) Theorem].

(5) (X, L) is a quadric fibration over a smooth curve, and one of the types in [2, (3.7) and (3.30)
Theorem].

Proof. By the proof of Theorem 9.2.2, we see that (Kx +(n—1)L)L"~! = 2. Hence g;(X, L) =
2. So by the classification of (X, L) with ¢1(X, L) = 2 (see [2, (1.10) Theorem]), (X, L) is one of
the above types because Kx + (n — 1)L is nef and (n — 1)-big. O

Theorem 9.2.4 Let n be an integer with n > 3. Let (X,Lq,...,L,—2) be an n-dimensional
multi-polarized manifold of type n — 2. Assume that one of the following conditions holds:

(a) n=3 and Kx + Ly is nef and 1-big.
(b) n>4, k(X)>0and Kx + Ly +---+ Ly_2 is nef.

Then for any integer m with m > 2 we have

-1
pfn(XaLla'u,Ln,Q) 2 1-|— %
Proof. By definition we get
P2(X, L. Lns) = gi(X,(m—=1)(Kx +Li+-+Ln2), L1, Ln_s)
+92(X, Ly, ..., Ly_3) — R} (Ox)
-1
= 1+%(KX+L1+".+Ln—2)2L1"'Ln_2

X8 (X, Ly,...,Ly_s) — 1.

On the other hand by assumption we have (Kx + Ly + -+ L, _2)?L; -+ L,_2 > 0 by [1, Lemma
2.5.8]. Moreover x5 (X, Ly,...,L,_3) > 1 by [9, Theorem 3.3.1(2)] and Theorem 8.2.2. Hence we
get the assertion. O

Remark 9.2.2 If dim X =2, m > 2 and Kx is nef and big, then by the Riemann-Roch theorem
and the Kawamata-Viehweg vanishing theorem we have

m(m —1
Since Ky is nef and big, we have x(Ox) > 1. Hence we get h®(mKx) > 1+ W Therefore

Theorem 9.2.4 can be regarded as a generalization of this result.

Theorem 9.2.5 Let (X, L) be a polarized manifold of dimension 3, and let m be an integer with
m > 2. Assume that Kx + L is nef and 1-big. Then p? (X,L) = 1+ (m(m — 1)/2) if and only if
O(Kx) = 0Ox, h'(Ox) =0, h°(L) =1 and L> = 1.

Proof. First we are going to prove the “only if” part. By the proof of Theorem 9.2.4, we see
that (Kx + L)2L = 1.

Assume that (Kx + L) > 0. Then by Proposition 7.1, we have (Kx + L)L? = 1. Again by
using Proposition 7.1, we also have L3 = 1. Hence (Kx + 2L)L? = 2. Therefore g, (X, L) = 2. By
the classification of (X, L) with g;(X,L) = 2 (see [2, (1.10) Theorem]) we see that O(Kx) = Ox
and h'(Ox) = 0 because K x + L is nef and 1-big. Moreover since p?, (X, L) = 1+ (m(m—1)/2), we
see from the proof of Theorem 9.2.4 that x3(X, L) = 1. Hence g2(X, L) = 0 because h'(Ox) = 0.
Therefore by [11, Corollary 2.3] or [5, Theorem 2.3] we have h°(L) = h°(Kx + L) = 1 since
h3(OX) =1 and hQ(OX) = hl(Kx) = hl(OX) =0.
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Assume that (Kx + L)? = 0. Then (X, L) is a quadric fibration over a normal surface S. Then
there exists a surjective morphism f : X — S with connected fibers such that Kx + L = f*(A) for
some ample line bundle A on S. Since (Kx + L)?L = 1, we get (f*(A))?L = 1. But by Proposition
7.2, this is impossible in this case.

Next we prove the “if” part. If O(Kx) = Ox, h'(Ox) =0, h%(L) = 1 and L3 = 1, then easy
calculations show that pZ, (X, L) = 1+ (m(m — 1)/2) holds. O

Remark 9.2.3 There exists an example of a polarized 3-fold (X, L) with O(Kx) = Ox, h*(Ox) =
0, h%(L) =1 and L3 = 1. (See [2, (2.7) and Remark (2.13)].)

Furthermore we can prove the following.

Theorem 9.2.6 Let m, n and i be integers such that m > 2, n > 2 and 1 < i < n—1. Let
(X,Lq,...,L,—;) be an n-dimensional multi-quasi-polarized manifold of type n — i. Assume that
Kx +Li+---+ Ly,—; is nef and (n—i)-big, and Bs|L;| = 0 for every integer j with 1 < j < n—i.
Then

pt (X, L1y, Loyi) >mgi(X,L1,..., L) — (m —1).

Proof. Here we note that ¢;(X, Lq,...,L,—;) > 0 by [12, Theorem 4.1]. Since
po(X, Ly, Ly i) >0

by Theorem 9.2.1, the assertion is true if g;(X,Lq,...,L,—;) = 0. So we may assume that
9i(X,L1,...,Ly—;) > 1. Here we use Notation 7.1. Then we note that

gi(X,Ly,...,Ln_) =h°(Kx, ,) and p! (X,L1,...,L,_s) =h'(mKx, ,).

Now we are going to prove the assertion by induction on m. First we consider the case where
m = 2. Since h°(Kx, ,) = gi(X,L1,...,L,—;) > 1 by assumption, we have h°(2Kx, ) >
2h%(Kx,_,) — 1 by Lemma 7.1. Therefore we get the assertion for m = 2.

Next we assume that the assertion is true for m = k& with & > 2. Then

pi(X,Ly,...,Ly_i) > kgi(X,L1,...,Lp_i) — (k—1)

Y

holds by assumption, and g;(X, L1, ..., L,—;) > 1implies that h®(kKx,, ,) = pi(X,L1,...,Ly—;)
1. Since h%(Kx, _,) = gi(X,L1,...,Ly_;) > 1, by Lemma 7.1 we obtain

Ph1(X, L1, ..o, Loy) RO((k+1)Kx, )

> ho(kKani) + hO(Kani) -1
= p?g(X7L1a"'7Ln77§)+gi(X7L17"-7Ln7i)_1
> kgi(Xlev s 7Ln*i) - (k - 1) +gi(X7L1a s 7Ln7i) -1
= (k+1)gl(X,L1,,Ln_z)fk
So we get the assertion for m = k + 1, and this completes the proof. O
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