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Abstract

Let (X,&) be a generalized polarized manifold of dimX = n > 3 and
rank(€) = r > 2. Assume that £ is very ample and n — r > 3. In this paper
we classfy (X, &) with g2(X,&) = h?(Ox) + 1, where g2(X, €) is the second
¢y-sectional geometric genus of (X, &).

1 Introduction.

Let X be a projective variety of dim X = n, and let L be an ample (resp. a nef
and big) line bundle on X. Then we call the pair (X, L) a polarized (resp. quasi-
polarized) variety, and (X, L) is called a polarized (resp. quasi-polarized) manifold
if X is smooth. In [6], we gave a new invariant of (X, L) which is called the i-th
sectional geometric genus g;(X, L) of (X, L) for every integer i with 0 <i <n. We
note that ¢;(X, L) is a generalization of the degree L™ and the sectional genus g(L).
(Namely go(X, L) = L™ and ¢;(X,L) = g(L).) Here we recall the reason why we
call this invariant the sectional geometric genus. Let (X, L) be a quasi-polarized
manifold of dimension n > 2 with Bs|L| = (), where Bs|L| is the base locus of
|L|. Let i be an integer with 1 < i < n, and let Y be the transversal intersection
of general n — i elements of |L|. In this case Y is a smooth projective variety of
dimension i. Then we can prove that g;(X, L) = h'(Oy), that is, g;(X, L) is the
geometric genus of Y.

*Key words and phrases. Ample vector bundles, generalized polarized manifold, sectional geo-
metric genus, c.-sectional geometric genus.
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In [6], we study some fundamental properties of the i-th sectional geometric
genus. We were able to generalize some problems about the sectional genus to the
case of the sectional geometric genus. For example, in [6], we proposed the following
conjecture:

Conjecture 1.1 Let (X, L) be a quasi-polarized manifold of dim X = n. For every
integer i with 0 <1 <mn, g;(X, L) > h'(Ox) holds.

Here we note that if ¢ = 0, then this is true because go(X, L) = L™ > 1 = h%(Ox). If
i = 1, then this is a Fujita’s conjecture. (See [5], Chapter II, (13.7) or [2], Question
7.2.11.) Hence we can regard the inequality g(L) > h'(Ox) as a generalization of
the inequality L™ > 1. In [6], we proved that this conjecture is true if Bs|L| =
). Moreover we classified polarized manifolds (X, L) which satisfy the following
properties:

(A) dim X > 3, Bs|L| = 0, and g2(X, L) = h*(Ox) (see [6], Corollary 3.5 or see
Theorem 1.1 below),

(B) dim X > 3, L is very ample, and ¢»(X, L) = h?*(Ox) + 1 (see [6], Theorem
3.6).

In a future paper, we will classify polarized manifolds (X, L) such that L is very
ample and go(X, L) — h?*(Ox) < 5. In [7] we study the conjecture for the case where
0 <dimBs|L| <n-—1.

Furthermore in [6] we proved the following which is analogous to a theorem of
Sommese ([14], Theorem 4.1):

Theorem 1.1 (See [6], Corollary 3.5.) Let (X, L) be an n-dimensional polarized
manifold. Assume that n > 3 and L is spanned. Then the following are equivalent:

32(X, L) = h2(Ox).
WKy + (n—2)L) = 0.

(1) (P, Opn(1)).

(2) (Q", Ogn(1)).

(3) A scroll over a smooth curve.

(4) Kx ~ —(n—1)L, that is, (X, L) is a Del Pezzo manifold.
(5)

5) A hyperquadric fibration over a smooth curve.
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(6) A scroll over a smooth surface.

(7) Let (X', L") be a reduction of (X, L).

) n=3, (X, L') = (Q% Og:(2)).

) n=3, (X',L') = (P3 Op(3)).

) n =3, X' is a P>-bundle over a smooth curve C with (F',L'|p) =
(P2, Op2(2)) for any fiber F of it.

In this way, it is interesting and very important to study the sectional geometric
genus, and we hope that by using this invariant we can study polarized manifolds
more deeply.

In [8], we considered the case of ample vector bundles. Let X be a smooth
projective variety of dim X = n and let £ be an ample vector bundle of rank(€) = r.
Then the pair (X, €) is called a generalized polarized manifold. Here we assume that
1 <r <n-—1. In [8], for every integer ¢ with 0 < i < n — r, we gave a vector
bundle’s version of the i-th sectional geometric genus, which is called the i-th c,-
sectional geometric genus of generalized polarized manifolds (X, E) (see Definition
2.3). Here we note that if » = 1, then this is the i-th sectional geometric genus
of polarized manifolds. Moreover this is a generalization of the c¢,-sectional genus
which was defined by Ishihara ([10]). Namely g¢1(X,E) is the ¢,-sectional genus.
(See Theorem 2.1.) Here we note that the ¢,-sectional genus is a generalization of
the curve genus which was defined by Ballico [1]. Therefore the i-th c¢,-sectional
geometric genus is a generalization of several important invariants.

Furthermore assume that £ is an ample vector bundle of rank(€) =r > 2 on X
with n —7 > 1 such that there exists a section s € I'(£) whose zero locus Z = (s)g is
a submanifold of X of the expected dimension n —r. Then ¢;(X, &) = g:(Z, c1(E|2))
(see Theorem 2.2). (Here we note that if £ is an ample and spanned vector bundle
of rank(&) = r with n — r > 1, then the above assumption is satisfied.)

Let (X, &) be a generalized polarized manifold of dim X = n and rank(£) = r
with n — r > 1 such that £ is ample and spanned. Then in [8] we proved that
(X, E) > h{(Ox) for every integer i with 0 < ¢ < n —r. Moreover if in [§],
Theorem 2.7, we classified (X, &) with go(€) = h*(Ox), r > 2, and n —r > 3.

In this paper, for a very ample vector bundle £ on X of rank(£) = r with
n—r > 3, we will classify (X,&) with go(X,€&) = h*(Ox) + 1. Main result is
Theorem 3.1.

2 Preliminaries.
Proposition 2.1 Let xg = 1 and let x; be an indeterminate of weight i for every

integer v with ¢ > 1. For any non-negative integer k, there exist unique polynomials
of weight k, Ty, € Q|x1, - -, xx], such that the following properties hold:
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(1) Ty =1.

(2) For any formal power series Y .-, x;t*, we put

o0 (e e]
tdi () wit') =D Tilwy, -, )t
=0 k=0

where t is an indeterminate.

If
inti = (Z yiti> ( Ziti> ;
i=0 =0 =0

tdt(z z;t') = (tdt(z W)) (tdt(z zﬁ’)) .

(3) For the linear expression 1 + xt,

then

xt

Proof. See [9], Chapter I, §1. O

Definition 2.1 (1) Polynomials T}, € Q[zy, -, x| in Proposition 2.1 is called the
Todd polynomial of weight k.

(2) Let X be a smooth projective variety and let F be a vector bundle on X. Let
ct(F) =350 ci(F)t" be the Chern polynomial of F. We put

tdy (F) = td()_ ei(F)t') = iTk(cl(}"), e (F)EE,
k=0

i>0
where ¢ is an indeterminate. Furthermore, we put

tdk(q(f)ﬂ T 7Ck<f)) = Tk(cl(]:)v T 7ck(]:))>
and

td(F) ==Y tdi(er(F), -+, ex(F)).
k=0
Then td(F) is called the Todd class of F.

Definition 2.2 (1) Let X be a smooth projective variety and let F be a vector
bundle on X. Then for every integer j with j > 0, the j-th Segre class s;(F) of F is
defined by the following equation: ¢;(FY)s;(F) = 1, where F¥ := Homo, (F, Ox),
c(F") is the Chern polynomial of F¥ and s.(F) = 3, s;(F)t/.

(2) Let X be a smooth projective variety and let 7x be the tangent bundle of X.
Then we put ¢;(X) := ¢;(Zx), where ¢;(7x) is the i-th Chern class of Tx.
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Definition 2.3 (See [8], Definition 2.1.) Let X be a smooth projective variety of
dim X = n and let £ be an ample vector bundle of rank r on X with 1 < r < n.
Then for every integer ¢ with 0 <7 < n —r, the i-th c,.-sectional geometric genus of

(X, ) is defined by the following:

wce) = S (M)

Jj=0

o —r—i—ga@)
szzo{ (n—r—FK)!

X thl(cl(X), Ce ,Cl(X))tdk_l(Sl(gv), Ce ,Sk_l(gv))} Cr(g)

n—i

(=1 (O0x) + (=1 R (Ox).

k=0

Theorem 2.1 Let X be a smooth projective variety of dim X =n and let £ be an
ample vector bundle of rank(E) =r on X.
(1) If1 <r <n-—1, then

BX.E) = 1+ 5 (K + (0= ) ()er(€)""er(€).

(2) If 1 <r <n—2, then

gQ(Xag)
= —1+h'(Ox)
1

+E(KX +(n—1)cl(E)(Kx +(n—7 —1)cy(E))e(E)er (E) 2

+%(02(X) + (Kx + a1(€))er (&) — ol €))er(E)en (E)" 7

n—r—23

2 2Kx + (n —1)c1(E)er (E)er (&)L

Proof. See [8], Theorem 2.5. O

Definition 2.4 Let X be a smooth projective variety and let £ be a vector bundle
of rank(£) = r on X.

(1) € is said to be ample and spanned if the tautological line bundle H(E) of Px (&)
is ample and spanned.

(2) € is said to be very ample if the tautological line bundle H (&) of Px (&) is very
ample.
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Remark 2.1 Let X be a smooth projective variety of dim X = n and let £ be an
ample vector bundle of rank(€) = r on X.

(1) Assume that n—r > 1 and & is spanned. Then there exists an element s € H°(E)
such that the zero locus of s is a submanifold of X of dimension n — r.

(2) If € is very ample, then £ is ample and spanned.

(3) Let £ be a very ample (resp. ample and spanned) vector bundle on X and let F
be a quotient bundle of £. Then F is also very ample (resp. ample and spanned).

Theorem 2.2 Let X be a smooth projective variety of dim X = n and let £ be an
ample vector bundle of rank r on X. Assume that 1 <r <mn —1 and & is spanned.
Let Z be a zero locus of a general section of H°(E). Then g;(X,E) = gi(Z,c1(€]2))
for every integer i with 0 <i<n —r.

Proof. See [8], Theorem 2.2. O

Theorem 2.3 (Lefschetz-Sommese) Let X be an n-dimensional smooth projec-
tive variety, and let € be an ample vector bundle of rank(E) = r > 2 on X such
that there exists a section s € I'(E) whose zero locus Z = (s)y is a submanifiold of
X of the expected dimension n —r. Letr,: H(X,Z) — HY(Z,7Z) be the restriction
homomorphism. Then

(1) 7, is an isomorphism for ¢ <n —r — 1.
(2) 7, is injective and its cokernel is torsion free for ¢ =mn —r.
Proof. See [12], 1.3 Theorem. O

Remark 2.2 Let X, £, and Z be as in Theorem 2.3. By the Hodge theory, we
obtain that h?(Ox) = h?(Oy) for every integer ¢ with 0 < ¢ < n —r — 1, and
R "(Ox) < " (Op).

Theorem 2.4 Let X be a smooth projective variety of dim X = n and let £ be an
ample vector bundle of rank r on X. Assume that 1 < r < n and £ is spanned.
Then g;(X,E) > h'(Ox) for0 <i<n—r.

Proof. See [8], Corollary 2.6. O

Theorem 2.5 Let X be a smooth projective variety of dim X =n > 3 and let £ be
a very ample vector bundle of rank v > 2 on X. Then go(X,det(€)) = h*(Ox) + 1
if and only if (X, &) is one of the following:

(1) (P?, Ops (1)%2).
(2) (@ O (1)%?).

(3) X = Ps, and & = Op3(1)®4, OP3(1)@2@OP3(2), Tps, Op3(1)@0p3(3), (9]}»3(2)®2,
or N'(2), where N is the null-correlation bundle on P3.
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(4) X 2 Q3 and € = Ogs(1)%%, 0gs(1) ® Ogs(2), or S(2), where S is the Spinor
bundle on Q3.

(5) X P2 x P, and £ =2 0(2,1) ® O(1,1) or piTp: @ psOpi (1), where p; is the
i-th projection fori = 1,2 and O(a,b) := p;Opz(a) @ p5Op1(b).

(6) (X, A®?), where (X, A) is a Del Pezzo 3-fold of degree d (3 <d <T).

(7) n =3 and there exists a fibration f : X — W over a smooth elliptic curve W
such that (F,Er) = (P?, Op2(1) @ Op2(2)) for every fiber F of f.

(8) n =3 and there exists a fibration f : X — W over a smooth elliptic curve W
such that (F,Er) = (Q% Ogz(1)*?) for a general fiber F of f.

Proof. See [11]. O

3 Main Theorem.
Theorem 3.1 Let (X,E) be a generalized polarized manifold of dim X = n > 3
and rank(€) = r > 2. Assume that n —r > 3 and & is very ample. If go(X,E) =
h*(Ox) + 1, then (X, &) is one of the following:

(a) (PT,Opr(1)%2).

(b) (P, Opr(1)).

(c) (P*,0ps(2) @ Ops(1)).

(d) (Q°, Oge(1)¥).

(e) (Q°,0qs(1)%).

(f) X is a 5-dimensional Fano manifold of index 4 and r = 2. Moreover Pic(X) =
Z-H and & = H>* for every line | of (X, H).

(g) There exists a surjective morphism f : X — W over a smooth elliptic curve W
such that a general fiber of f is a smooth hyperquadric Q* with €| = Oga(1)%2,

(h) There exists a surjective morphism f : X — W over a smooth elliptic curve
W such that a general fiber F' of f is Pp1(G) for some vector bundle G of rank
4 on Pt and E|p = @5_(H(G) + 7*Op1(b))), where H(G) is the tautological
line bundle of G and 7 : F' — P! is the bundle projection.
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Proof. By assumption, there exists a section s € H°(E) such that the zero locus
Z := (s)p is a smooth projective variety of dimZ = n —r > 3. Then by Theorem
2.2 and Theorem 2.3 we get that

92(Z,c1(€lz)) = ¢2(X.E)
= h*(Ox)+1
= h*(0y) + 1.

Here we note that dim Z > 3 by assumption. Hence by Theorem 2.5, (Z,&|z) is one
of the following:

(I) (P?, Ops (1))
(ID) (Q*, Oge(1)*2).

(IT1) Zz = P3, and Ely = O]p3(1)@4, OP3(1)®2 @ Ops(2), Tps, Ops(1) B Ops(3),
Op3(2)%% or N(2), where N is the null-correlation bundle on P3.

IV) Z=Q3, and €|; = Ogs(1)®3, Ogs (1) @ Ogs(2), or S(2), where S is the Spinor
(IV) Q Q Q p
bundle on Q3.

(V) Z=P?*x P! and €], 2 O(2,1) @ O(1,1) or piTpe @ p3Opi (1), where p; is the
i-th projection for i = 1,2 and O(a, b) := p;Op2(a) @ p5Op:(b).

(VI) (Z, A®?), where (Z, A) is a Del Pezzo 3-fold of degree d (3 <d < 7).

(VII) n —r = 3 and there exists a fibration h : Z — W over a smooth elliptic curve
W such that (Fj,Er,) = (P?, Opz(1) @ Op2(2)) for every fiber F}, of h.

(VIII) n —r = 3 and there exists a fibration h : Z — W over a smooth elliptic curve
W such that (F), &) =2 (Q?, Oge(1)®?) for a general fiber F), of h.

(A) Assume that Z = P"". Then (Z,€|yz) is either (I) or (III).
Then by [12], Theorem A, we get that (X, &) = (P™, Opn(1)®") since n —r > 3. We
note that h?(Ox) = 0. We also note the following:

KX = O]pn(—(n + 1)),

- (”; 1) Op(1)2,

c2(X)

(&) = rOp(1),
)
)

o) = (2) O (1,

Cr(g = O]}Dn(l)r

If (Z,€]|7) is the case (I) (resp. (II)), then n —r =5 (resp. 3). Here we calculate
g2(X, €) in this case.
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Assume that (Z,&|z) is the case (III). In this case n —r = 3 and n > 5. Then
by Theorem 2.1 (2)

1
B(X, &) =—-1+ 12( —3)(2n? — 24n + 76).
(Ox) +1 = 1, we obtain that n = 7 and » = 4. Namely
). This is the type (b) in Theorem 3.1.
E|z) is the case (I). In this case n —r =5 and n > 7. Then by

Since ¢o(X, 5) h?

(X,€) = (7, 0(1)"
Assume that (Z,

Theorem 2.1 (2)

1
GB(X,E) = -1+ Z(n —5)3(5n? — 68n + 232).

Since ¢g2(X,E) = h*(Ox) + 1 = 1, we obtain that n = 7 and r = 2. Namely
(X, &) = (P7, Opr(1)®?). This is the type (a) in Theorem 3.1.
(B) Assume that Z = Q" ". Then (Z,€&|z) is either (II) or (IV).
Then by [12], Theorem B, we get that (X,&) = (P",Opn(2) & Opa(1)® 1) or
(Q", Ogn (1)®7) since n — r > 3. We note that h*(Ox) = 0.

If (Z,€|7) is the case (IV) (resp. (II)), then n —r = 3 (resp. 4). Here we
calculate g2(X, ) in this case.

Assume that (X, &) = (P, Opn(2) & Opn (1) ~1). We also note the following:

Kx = Opr(=(n+1)),

_ (n+1> o (12,

)

(€)= (r+1)Opa( 1),

(€)= ( (r—1) ) ))Opn (1)?,
)

(&) = 20p(1

If (Z,€|z) is the case (IV), then n —r = 3 and n > 5. By Theorem 2.1 (2)

Co (X

3

1
GB(X,E)=—-1+ 6(n —2)(2n* — 17n + 39).
Since g2(X,E) = h*(Ox) + 1 = 1, we obtain that n = 5 and r = 2. Namely
(X, &) = (P°,Ops(2) ® Ops(1)). This is the type (c) in Theorem 3.1.
If (Z,€|z) is the case (II), then n —r =4 and n > 6. By Theorem 2.1 (2)
1
G(X,E) =1+ 6(n —3)* (7n* — 66n + 158) .

But in this case ¢go(X, &) # h*(Ox) + 1
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Assume that (X, &) = (Q", Ogn(1)®"). We also note the following:

Kx = Og(—n),
00 = (("37) - 20) 000

() = 1O (1)
ale) = (3) 00
o) = O1)

If (Z,€|z) is the case (IV), then n —r = 3 and n > 5. By Theorem 2.1 (2)
1
@(X,E)=—-1+ 6(n —3)(2n* — 21n + 58).

Since ¢o(X,E) = h*(Ox) + 1 = 1, we obtain that n = 6 and r = 3. Namely
(X,E) = (Q°% Ogs(1)¥?). This is the type (d) in Theorem 3.1.
If (Z,€|z) is the case (II), then n — r = 4 and n > 6. By Theorem 2.1 (2)

1
@(X,E)=—-1+ 6(n — 4)*(Tn* — 80n + 231).

Since ¢g2(X,E) = h*(Ox) + 1 = 1, we obtain that n = 6 and r = 2. Namely
(X,E) = (Q° Ogs(1)®?). This is the type (e) in Theorem 3.1.

(C) Assume that Z = P? x P!. Then by Theorem 2.3, H(X,Z) = H'(Z,Z) for
i = 1,2. By the Hodge theory, we obtain that h'(Ox) = hi(Oy) for i = 1,2. Hence
p : Pic(X) — Pic(Z) is an isomorphism by the following commutative diagram:

oYX,Z) —— HY(Ox) —— Pic(X) ——~ HXX,Z) —— H*Oy)

HY(Z,7) —— HY(Oz;) —— Pic(Z) —— HX(Z,Z) —— H*Oy)

We take pjOp2(1)@p;0p1 (1) € Pic(Z), where p; is the i-th projection for i = 1, 2.
Then there exists H € Pic(X) such that H|; = pjOp2(1) @ p5Op1(1). Then by
considering the second projection py : Z — P!, we obtain that (Z, H|z) is a scroll
over P'. Hence by [13] Theorem B, (X, H) is a scroll over P! such that &|p =
Opn—1(1)®" for every fiber F of f: X — P! and f|z = po. In particular €|, is split,
where F is a fiber of p, : Z — P!, On the other hand since €|z =2 O(2,1) & O(1,1)
or p;Tp2 @ p5Op1 (1), we obtain that r = 2, and £|p, = Op2(2) ® Op2(1) or Tpz. Since
E|r, is split, we get that E|r, = Op2(2) & Opi(1). But since E|r = Opn-1(1)%2] this
is a contradiction. Hence this case cannot occur.
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(D) Assume that (Z,&|z) = (Z, A®%), where (Z, A) is a Del Pezzo 3-fold of degree

d, where d is an integer with 3 < d < 7.
In this case n —r = 3 and r = 2. Namely n =5 and r = 2.
(D.1) If p(Z) = 1, then by [12], 2.5 Proposition, we get the following:

(D.1.1) X =P5 and € = Ops(3) ® Ops(1) or € has the generic splitting type (2,2).
(D.1.2) X =Q° and & = Op1(2) ® Op: (1) for every line [ C Q°.

(D.1.3) X is a 5-dimensional Fano manifold of index 4 and r» = 2. Moreover Pic(X)

I

Z - H and & = H** for every line [ of (X, H).

Claim 3.1 The cases (D.1.1) and (D.1.2) are impossible.

Proof. By [12], 2.4, we get that Pic(X) = Pic(Z), A is the ample generator of
Pic(Z), and Hz = A, where H is the ample generator of Pic(X).

First we assume that (X, ) is the case (D.1.1). Then ¢;(€) = Ops(4). On the
other hand ¢;(£) = 20ps(1) because ¢1(€|z) = 2A. But this is a contradiction.

Next we assume that (X, &) is the case (D.1.2). Then since ¢;(£|z) = 24, we
obtain that ¢1(€) = 20gs(1). We put Opi(a) := Ogs(1)]; for a line [ C Q°. Then
c1(E)|i = Op1(2a). On the other hand ¢;(€)|; = Op:1(3) by assumption of (D.1.2).
Hence 2a = 3. But this is impossible because a € Z. This completes the proof of
Claim 3.1. O

If (X, &) is the case (D.1.3), then we get the type (f) in Theorem 3.1.
(D.2) If p(Z) > 2, then by [3], Theorem 1, we obtain the following:
There exist a smooth projective surface S and an ample vector bundle F of rank 4

on S such that X = Pg(F), where

g~ P! x P! if Z =2 P! x P! x P,
) P2 otherwise.

Moreover £ = H(F) ® f*(G), where H(F) is the tautological line bundle of F
on X, f: X — S is the bundle projection and G, a vector bundle of rank 2 on S, is
the dual of the kernel of the vector bundle surjection F — B corresponding to the
fiberwise inclusion of Z = Pg(B) into X.

Claim 3.2 £ = (H(F) ® f*(B))®? for some line bundle B € Pic(S).

Proof. First we note that f|; = pand H(F)|z = H(B). Since £ = H(F)® f*(G), we
get that E|z = H(F)|z@(f*(G))z = H(B)@p*(G), where p: Z = Pg(B) — S is the
projection. Hence ¢1(€|z) = 2H(B) + ¢1(p*(G)). Therefore Ay = H(B) ® p*(B) for
some B € Pic(S). Since 7 = Az ® Az, we obtain that p*(G) = (H(B) '@ Az)®? =
(p*(B))®2. Therefore G 2 B& B and € = H(F)® f*(G) = (H(F)® f*(B))®%. This
completes the proof of Claim 3.2. O
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Next we give the formula of go(X,E). We note the following:

Ky = —4H(F)+ f*(Ks+ ai(F)),
) = a(fTs) +a(fF o HF))a(fTs) +e(fF' @ HF)),
a(f) = 2H(F)+2f*(B),
) = (HF)+f(B)"

By Theorem 2.1 (2), we get that following:

(1) 92(X, )
— 14 RN(Ox) + % UKs + 1 (F))? + 48(Ks + e (F)) B
+96B% 4 8(Kg + c1(F))er(F) — ey (F)? + 2¢4(S)

+601(S>Cl(.7:) + 2401(5)3} .
Here we note that h'(Ox) = 0 in this case.

Claim 3.3 Assume that S =2 P2. Then this case cannot occur.

Proof. We put ¢;(F) = Op2(f) and B = Op2(b), where f and b are integers. Then
by (1) above,

1
92(X, &) = —1+§(f2+8fb+16b2—3f—126+4).

If g2(X,&) = h*(Ox) +1, then f248fb+16b*> —3f —12b = 0. Namely (f +4b)(f +
4b —3) =0. Hence f +4b=0or f+4b=3.

Since £ is ample, H(F) ® f*(B) is also ample by Claim 3.2. We put ‘H :=
[«(H(F)® f*(B)). Then X ¥ Pp2(H) and H(H) = H(F) @ f*(B).

Since H(F)® f*(B) is ample, so is H(H). Hence H is ample. Here we note that
H=f.(HF)® f(B)) =F ®B. Then ¢;(H) = ¢1(F) + 4B = Opz(f + 4b). Since
‘H is ample, f 4+ 4b > 0 and we obtain that f + 4b = 3.

Let [ be a line in P2. Then ¢;(H)l = f + 4b = 3. But since rank(H) = 4 and
[ = P! we obtain that c;(H)l > 4, and this is a contradiction. This completes the
proof of Claim 3.3. O

Next we consider the case where S = P! x P!,

Claim 3.4 Assume that S = P! x P'. Then this case cannot occur.

Proof. First we note that for any member D € Pic(P' x P!), we can write D =
pi(O(a)) @ p5(O(b)) for some integers a and b, where p; : P! x P! — P! is the i-th
projection. We put O(a,b) := pi(O(a)) @ p3(O(b)). We also note that ¢;(B) =
O(2ty,2ts) for some integers t; and ty because Ky = —2H(B) + (f|z)* (Kpixpr +
c1(B)), Kpiypr = O(—2,—-2), and Kz = 2D for some D € Pic(Z). Since (Z, H(B)®
(flz)*(B)) is a Del Pezzo manifold, we obtain that 2(H(B) + (f|z)*(B)) = =Kz =
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2H(B)+(f|2)*(O(2—2t1,2—2t5). We put B = O(by,by). Then we get that ¢t;+b; = 1
for i = 1,2. On the other hand, by the following exact sequence

0—>G'—=F—B—0,

we obtain that ¢;(F) = ¢1(GY) + c1(B). Hence ¢ (F) = O(2t; — 2by, 2ty — 2by)
because G = B @ B. Since t; + b; = 1 for i = 1,2, we obtain that

(2) Cl(f) 20(2—4b1,2—4b2)

Since F is ample, by < 0 and by < 0 are obtained.
Next we calculate go(X,E) by using b; and by. We note that

(3) Ky = O(=2,-2)
(4) (S) = 4.

By (1), (2), (3), and (4), we obtain that go2(X,E) =1 — 4by — 4be. Since go( X, E) =
h*(Ox) +1 =1, we get that by = by = 0 and ¢;(F) = O(2,2). Let F’ be a fiber
of the first projection P! x P! — P!. Then ¢, (F)F’ = 2. But since F is ample,
rank(F) = 4, and F' = P!, we obtain that ¢;(F)F’ > 4. This is a contradiction.
This completes the proof of Claim 3.4. O

(E) Assume that n —r = 3 and there exists a fibration h : Z — W over a smooth
elliptic curve W such that (Fj, &|r,) = (P?, Op2(1) & Op2(2)) for every fiber F}, of h
or (F,&lp,) = (Q? Ogz2(1)%?) for a general fiber F}, of h.

In this case, we have n =5 and r = 2.

Claim 3.5 Let a: X — «(X) be the Albanese map of X. Then a(X) is a smooth
elliptic curve, W = a(X), and h = a|z.

Proof. Since h'(Ox) = h'(Oz) = 1, we obtain that «(X) = Alb(X) and «a(X)
is a smooth elliptic curve. (Here Alb(X) denotes the Albanese variety of X.) Let
alz + Z — «a(X). Then alz is surjective. Here we note that h : Z — W is a
surjective morphism with connected fibers such that a general fiber Fj, is P2 or Q2.
Hence «|z(F},) is a point. Therefore by [2], Lemma 4.1.13, there exists a surjective
morphism ¢ : W — «(X) such that a|z = § o h. But since h has connected fibers,
0 is an isomorphism. O

Let Fj, (resp. F,) be a general fiber of h (resp. «). Since Kg, +¢1(E|p,) = OF,,
h = a|z, and Z N F, = F},, we obtain that

K (Kx +2¢1(E)|r)Im, = (Kx +2¢1(E))|2)|r, & (Kz + 1(€l2))|R, = OF,.

Here we note that since Z is the zero locus of a general member of H°(E), a
general fiber F}, of h : Z — W is the zero locus of a general member of H°(E|r,) by
Claim 3.5.

(E.1) If F}, = P?, then by [12], Theorem A, we get that (F,,&|r,) = (P, Ops(1)%?).
In particular, (Kx + 2¢1(€))|r, = Ops(—1). But by [x], this is impossible.
(E.2) Assume that (Fj,&|p,) = (Q% Og2(1)®?). By [12], Theorem B, (F,,&|g,) is

one of the following;:
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(B.2.1) (Fu, E|r) = (P*, 051(2) @ Opa(1)).
(B2.2) (Fu, Elr,) = (Q*, Oge(1)22).
(

(E.2.3) F, =Pp(G) for some vector bundle G of rank 4 on P* and &|r, = ®3_, (H(G)+
7 Op1(b;)), where H(G) is the tautological line bundle of G and = : F, — P*
is the bundle projection.

If (Fy,&|R,) is the case (E.2.1), then (Kx + 2¢1(€))|r, = Ops+(1), and this is
impossible by [x].

By putting f := «, the case (E.2.2) (resp. (E.2.3)) is the type (g) (resp. (h)) in
Theorem 3.1.

These complete the proof of Theorem 3.1. O

Example 3.1 Here we will give an example of the case (f) in Theorem 3.1.
Let (X, H) be a 5-dimensional Fano manifold of index 4 with H®> > 3 and let
E = H®2. Then & is a very ample vector bundle of rank 2 and

a(€) = 2H,

c(€) = H2
On the other hand

Kx = —4H,

c(X)H? = 12+ 5H°.

Hence by the definition of the second c,-sectional geometric genus, we obtain that
gg(X,g) =1= h2(OX) + 1.

Problem 3.1 Does there exist a very ample vector bundle € of rank(€) = 2 on a
Fano 5-fold X of index 4 such that € is not split and go(X,€) = h*(Ox) +1 7

Example 3.2 Here we consider the case (g) in Theorem 3.1.

Let (X, L) be a hyperquadric fibration over a smooth elliptic curve C. Let
f X — C be its morphism. We put F := f.(L). Then F is a locally free
sheaf of rank(F) = n+ 1, where n = dim X. In this case there exists an embedding
t: X — Po(F) such that f = morand X € |2H(F)+7*(D)|, where 7 : Po(F) — C
is the projection, H(F) is the tautological line bundle of P(F), and D € Pic(C).
Here we assume that n = 5 and we put £ := L & L. Then £ is an ample vector
bundle of rank(€) =2 on X.

Next we calculate go(X,E). We note the following:

HF)x = L
al) = 2L
(&) = L*
Kx = —4L+ f"(a(F)+ D)

2(X) = 7L = 3L{*(cy(F)) — 2L (D).
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We put b = deg D and e = deg F. By Theorem 2.1 (2) and the above equalities,
we obtain that ¢go(X,&) = b+ e. On the other hand the sectional genus of (X, L)
g1(X,L) =14 b+e (see [4]). By [4], Example 3.9 and Example 3.11, there exists a
hyperquadric fibration (X, L) over a smooth elliptic curve C' with dim X = 5 such
that (b, e, L°) = (1,0,1) or (0,1,2). In these cases g2(X,&) =1 = h?(Ox) + 1.

But we note that £ is not very ample in each case. First we can prove that L is
not very ample. (If L is very ample, then X = P% or Q° because L°> = 1 or 2. But
this is impossible because Pic(X) = Z in each case.) Therefore £ is not very ample
because £ — L is surjective. (See Remark 2.1 (3).)

The existence of the case (h) in Theorem 3.1 is uncertain at present.
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